Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blood Test Can Predict How Long Vaccine Immunity Will Last

By LabMedica International staff writers
Posted on 03 Jan 2025

When children receive their second measles-mumps-rubella vaccine around the time they start kindergarten, they typically gain long-lasting protection against all three viruses. More...

In contrast, the effectiveness of an influenza vaccine, given in October, starts to decrease by the following spring. Researchers have long been puzzled by why some vaccines induce long-lasting antibody production while others offer only short-term immunity. A new study has revealed that the durability of vaccine responses may, in part, be linked to an unexpected type of blood cell called megakaryocytes, which are usually associated with blood clotting.

In the study, scientists from Stanford Medicine (Palo Alto, CA, USA) identified a molecular signature in the blood that forms within days of vaccination and can predict how long the body’s antibody responses will last. In their previous research, the team identified a "universal signature" that could predict the early antibody response to various vaccines, but it did not indicate how long these responses would endure. In their latest work, published in Nature Immunology, the researchers focused on an experimental H5N1 bird flu vaccine, administered with or without an adjuvant— a chemical compound that enhances the immune response to an antigen but does not trigger immunity by itself.

The study tracked 50 healthy volunteers who received two doses of the vaccine, with or without the adjuvant. Blood samples were taken at 12 different time points over the first 100 days after vaccination. The team analyzed the genetic, protein, and antibody composition of these samples, and then used machine learning to analyze the data for patterns. The analysis revealed a specific molecular signature, mostly found in small RNA fragments within platelets, that was strongly correlated with the strength of the antibody response several months after vaccination.

Platelets, which are derived from megakaryocytes in the bone marrow, often carry small RNA pieces from their parent cells when they enter the bloodstream. While tracking megakaryocytes directly is difficult, the RNA in platelets can act as a proxy, reflecting megakaryocyte activity. The Stanford team confirmed this relationship by giving mice both the bird flu vaccine and thrombopoietin, a drug that stimulates the production of activated megakaryocytes in the bone marrow. This treatment led to a sixfold increase in anti-bird flu antibodies two months later. Further experiments showed that activated megakaryocytes produce molecules that promote the survival of plasma cells, which are responsible for antibody production. When these molecules were blocked, fewer plasma cells survived in the presence of megakaryocytes.

To test whether this finding applied to other vaccines, the researchers examined data from 244 individuals who had received seven different vaccines, including those for influenza, yellow fever, malaria, and COVID-19. The same platelet RNA molecules linked to megakaryocyte activation were associated with longer-lasting antibody responses across all these vaccines. The molecular signature not only predicted which vaccines would provide longer-lasting immunity but also indicated which individuals would experience longer-lasting responses. The researchers plan to further investigate why certain vaccines induce higher levels of megakaryocyte activation. These insights could help develop vaccines that more effectively stimulate megakaryocytes, resulting in more durable antibody responses. Additionally, the team aims to create tests to predict how long the immunity from a vaccine will last, potentially speeding up clinical trials and allowing for more personalized vaccination strategies.

“We could develop a simple PCR assay — a vaccine chip — that measures gene expression levels in the blood just a few days after someone is vaccinated,” said Bali Pulendran, PhD, a professor of microbiology and immunology. “This could help us identify who may need a booster and when.”


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Fusun Can (at left) is developing a test for detecting both resistance and virulence in Klebsiella pneumoniae (Photo courtesy of Koç University)

Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae

Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.