We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Outperforms Pathologists in Diagnosing Breast Cancer

By LabMedica International staff writers
Posted on 20 Dec 2017
Print article
A study comparing the ability of Artificial Intelligence (AI) algorithms with expert pathologists in detecting metastatic breast cancer in whole-slide images found that the machine learning outperformed the pathologists. The results of the study published in the Journal of the American Medical Association suggests that deep learning algorithms have the ability to improve diagnosis and could be used to help clinicians detect cancer in the clinic.

The study pitted 11 pathologists with time constraints and one pathologist without time constraints against seven deep learning algorithms in analyzing a training data set of whole-slide images – 110 with and 160 without verified nodal metastases. Out of the 49 test slides with metastatic disease, the pathologists found 31 on an average, while the pathologist allowed to work without time constraint correctly identified 46 out of 49 slides with cancer and 79 out of 80 slides without cancer.

Among the seven deep learning algorithms, the best algorithm performed significantly better in the whole-slide image classification task as compared to the pathologists working with time constraints. The mean performance of the top five algorithms was comparable with that of the single pathologist working without time constraints. However, at a mean of 0.0125 false-positives per normal whole-slide image, the performance of the best-performing algorithm was comparable with that of the single pathologist working without time constraint.

The research was led by Babak Ehteshami Bejnordi, Radboud University Medical Centre Nijmegen in the Netherlands. The researchers concluded that while the findings suggested the potential utility of deep learning algorithms for pathological diagnosis, it required further assessment in a clinical setting.

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
RFID Tag
AD-302 M730
New
Automated Immunoassay Analyzer
Phadia 1000

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.