We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AACC Competition Demonstrates How Labs Can Use Data Analytics to Solve Real Problems

By LabMedica International staff writers
Posted on 17 Oct 2022
Print article
Image: Advances in machine learning and data analytics are transforming the field of laboratory medicine (Photo courtesy of AACC)
Image: Advances in machine learning and data analytics are transforming the field of laboratory medicine (Photo courtesy of AACC)

Clinicians rely on parathyroid hormone-related peptide (PTHrP) measurement to help establish a diagnosis of humoral hypercalcemia of malignancy - a rare form of cancer that causes, among other things, high levels of calcium in the blood. The problem: Clinicians often order it for patients with low pretest probability. Excessive PTHrP testing can lead to expensive, unnecessary, and potentially harmful procedures, including invasive laboratory testing to locate a possibly nonexistent cancerous tumor. A successful predictive algorithm would help laboratorians quickly and accurately identify potentially inappropriate PTHrP test orders by predicting whether laboratory data available at the time of order already suggest an abnormal PTHrP result. A machine-learning challenge introduced for the first time by the American Association for Clinical Chemistry (Washington, DC, USA; www.aacc.org) at the 2022 AACC Annual Scientific Meeting & Clinical Lab Expo demonstrated how laboratories can use data analytics to solve these real problems facing patients and clinicians.

The Predicting PTHrP Results Competition introduced by the AACC at the event in association with the informatics section in the department of pathology and immunology of Washington University School of Medicine, St. Louis (WUSM, St. Louis, MI, USA) aimed to engage the community of laboratory medicine practitioners in a fun and friendly online environment where they could practice their data analytics skills, learn from each other, and see how others approach problems on the data-driven side of laboratory medicine. Competition participants formed teams and used securely shared real, de-identified clinical data from PTHrP orders at WUSM to build their predictive algorithms. This is termed the “practice dataset”. Using real clinical data was a big deal because most machine-learning competitions use synthesized datasets. Organizers set up the competition using Kaggle, a popular online platform for machine-learning modeling and contests, and selected F1 score (the harmonic mean of sensitivity and specificity) as the performance metric.

A major challenge for the teams was developing a predictive model that achieved high accuracy without overfitting it to the public dataset (the practice dataset). Overfitting would mean the algorithm worked well on the initial data but failed if applied to new data and was not generalizable. Organizers used a second, private dataset to judge the algorithm’s effectiveness. From May to June 2022, 24 teams ran a total of 395 iterations of their predictive models through the public dataset. Each time a team submitted a predictive model for an attempt, they used the resulting F1 score to improve - or “train” - the model. For the final attempt, each team ran their predictive model through the private dataset. The winning team, Team Kagglist, achieved an F1 score of 0.9 with their predictive model. For reference, WUSM’s manual approach for identifying patients at risk for PTHrP had an F1 score of 0.6, making the algorithm a significant improvement over standard practice.

“We shouldn’t expect a predictive model trained on data from one hospital to automatically work at other hospitals,” said Team Kaggle’s Yingheng Wang. “Ultimately, we should aim to create adaptive models that can be fine-tuned by other institutions for their specific populations.”

“The quality of all 24 models was excellent and showed a high degree of accuracy for the very difficult task we challenged participants with,” said competition organizer Mark Zaydman, MD, PhD, an assistant professor of pathology and immunology at WUSM. “This competition really showed our community is ready to engage with sophisticated machine learning and data analytics tools.”

Related Links:
AACC 

New
Gold Member
Veterinary Hematology Analyzer
Exigo H400
New
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Dehydroepiandrosterone Assay
DHEA ELISA
New
DNA Extraction Kit
Ron’s Gel Extraction Mini Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.