We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Nanowire Technology Developed to Detect Cancer Biomarkers in Urine

By LabMedica International staff writers
Posted on 04 Jan 2018
Analyzing microRNAs (miRNAs) within urine extracellular vesicles (EVs) is important for realizing miRNA-based, simple, and noninvasive early disease diagnoses and timely medical checkups.

A new approach for detecting cancer biomarkers in urine has been developed using a device composed of nanowires anchored into a microfluidic substrate. More...
This device enables EV collections at high efficiency and in situ extractions of various miRNAs of different sequences (around 1,000 types) that significantly exceed the number of species being extracted by the conventional ultracentrifugation method.

Scientists at Nagoya University (Furo-cho, Japan) and their colleagues fabricated nanowire-anchored microfluidic device for in situ extraction of urine EV–encapsulated miRNAs was fabricated by bonding the nanowire-embedded polydimethylsiloxane (PDMS) substrate and a herringbone-structured PDMS substrate. This new approach relies on playing the forces of negatively charged EVs off of positively charged nanowires to extract the miRNAs from the urine of patients with a variety of diseases. The team looked at samples from patients with pancreatic, liver, bladder, and prostate cancer, in addition to healthy subjects.

The scientists used a syringe pump to flow urine into the device, and then transferred the extracted samples on Toray's 3D-Gene microarray platform (Tokyo, Japan) for miRNA analysis by pipetting. Using the device, they were able to detect 1,106 different types of miRNAs in a single milliliter, versus an average yield of 200 to 400 miRNAs in total obtained using conventional methods, such as centrifugation.

The mechanical stability of the anchored nanowires during the buffer flow, as well as to the electrostatic collection of EVs onto the nanowires attributed to the success of the device. The approach yielded potential cancer-related miRNAs in urine for not only urological malignancies such as prostate cancer and bladder cancer, but also non-urological ones such as liver cancer and pancreatic cancer, the scientists believe it will be widely applicable.

Takao Yasui, PhD. an assistant professor and corresponding author of the study, said, “Our developed device could allow us to collect thousands of urinary microRNAs from only 1 mL of urine. Our new approach should allow scientists to move closer to the long-term goal of urinary miRNA-based early diagnoses and timely medical checkups for a variety of cancers.” The study was published on December 15, 2017, in the journal Science Advances.

Related Links:
Nagoya University
Toray Industries


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AI-powered ctDNA analysis provides clinicians with a new lens to monitor disease evolution (Photo courtesy of Brandon Stelter, Katie Han, Kyle Smith, and Paul Northcott)

AI-Powered Liquid Biopsy Classifies Pediatric Brain Tumors with High Accuracy

Liquid biopsies offer a noninvasive way to study cancer by analyzing circulating tumor DNA in body fluids. However, in pediatric brain tumors, the small amount of ctDNA in cerebrospinal fluid has limited... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: Sophie Paczesny, M.D., Ph.D and her team have made BIOPREVENT freely available for researchers and clinician to test and learn from (Photo courtesy of Cliff Rhodes)

AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear

Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.