We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Technology Accurately Predicts Breast Cancer Risk Via ‘Zombie Cells’

By LabMedica International staff writers
Posted on 30 Sep 2024
Print article
Image: The new AI technology more precisely predicts the risk of getting breast cancer (Photo courtesy of William Brøns Petersen)
Image: The new AI technology more precisely predicts the risk of getting breast cancer (Photo courtesy of William Brøns Petersen)

Breast cancer remains one of the most common cancers worldwide, causing 670,000 deaths in 2022. A key aspect of assessing cancer risk involves identifying dying cells. A new study has demonstrated that artificial intelligence (AI) can enhance treatment for women by identifying irregular-looking cells, thus improving cancer risk assessment. The study, published in The Lancet Digital Health, found that AI significantly outperformed current clinical benchmarks for breast cancer risk prediction.

Researchers from the University of Copenhagen (Copenhagen, Denmark) used deep learning AI technology to analyze mammary tissue biopsies from donors, searching for signs of cell damage, a marker of cancer risk. This damage is linked to cellular senescence, where cells stop dividing but remain metabolically active. While senescent cells can help suppress cancer development, they can also trigger inflammation, which may lead to tumor formation. By using AI to detect these senescent cells in tissue samples, the researchers were able to predict breast cancer risk more effectively than the Gail model, the current standard for risk assessment.

To train the AI, the researchers used cells in a lab that were intentionally damaged to induce senescence. The AI was then applied to donor biopsies to detect senescent cells—often called "zombie cells" because they have lost some functions but are not entirely dead. These cells are closely associated with cancer development, so the AI algorithm was designed to predict senescence by analyzing the irregular shapes of cell nuclei, which change as the cells become senescent. The study also found that combining two AI models or integrating an AI model with the Gail score, greatly improved cancer risk predictions. One combination produced an odds ratio of 4.70, indicating that donors with certain cell features had nearly five times the risk of developing cancer in the coming years. While it will take time before this technology is available in clinical settings, its potential is global. Since the method only requires standard tissue sample images, it could eventually be used worldwide, offering women better insights for treatment decisions.

“The algorithm is a great leap forward in our ability to identify these cells. Millions of biopsies are taken every year, and this technology can help us better identify risks and give women better treatment,” said Associate Professor Morten Scheibye-Knudsen from the Department of Cellular and Molecular Medicine and senior author of the study. “We will be able use this information to stratify patients by risk and improve treatment and screening protocols. Doctors can keep a closer eye on high-risk individuals, they can undergo more frequent mammograms and biopsies, and we can potentially catch cancer earlier. At the same time, we can reduce the burden for low-risk individuals, e.g. by taking biopsies less frequently.”

Related Links:
University of Copenhagen

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
RNA/DNA Extraction Instrument
QIAcube Connect Instrument

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The BIOFIRE® FILMARRAY® Tropical Fever Panel has received U.S. FDA Special 510(k) clearance (Photo courtesy of bioMérieux)

Syndromic PCR Test Rapidly and Accurately Identifies Pathogens in Patients with Tropical Fever Infections

Tropical fevers refer to infections that are common in, or unique to, tropical and subtropical regions. As these diseases spread to previously unaffected areas and can be brought in by travelers, infections... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.