We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

By LabMedica International staff writers
Posted on 17 Oct 2024
Print article
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to make diagnostic testing more accessible, especially for individuals in rural areas or developing countries, and for those who fear needles when it comes to blood tests. Existing rapid tests, known as lateral-flow assays, such as COVID tests or pregnancy tests, can quickly indicate a "yes" or "no" regarding the presence of a specific biomarker or biomolecule in blood or urine. However, these tests usually cannot quantify how much of the substance is present and often lack the sensitivity to detect very low amounts. On the other hand, the gold standard for clinical blood tests, the enzyme-linked immunosorbent assay (ELISA), is highly sensitive and specialized enough to identify rare or scarce biomarkers. However, it requires costly equipment and complex procedures, leading to delays of hours or days before patients receive their results. But all that could now change with the introduction of a new handheld, sound-based diagnostic system that can provide accurate results in just an hour using only a small finger prick of blood.

Based on systematic experiments and peer-reviewed research, researchers at the University of Colorado Boulder (Boulder, CO, USA) are developing a diagnostic tool that is sensitive, portable, and user-friendly. Their innovative components include tiny particles referred to as “functional negative acoustic contrast” particles (fNACPs) and a custom-built handheld device known as an “acoustic pipette,” which emits sound waves to the blood samples. The fNACPs, which resemble cell-sized rubber balls, are engineered with functional coatings that enable them to recognize and capture a specific biomarker of interest, such as an infectious virus or a protein associated with a potential health issue. These particles respond to sound wave pressure differently than blood cells, and the acoustic pipette is designed to take advantage of this unique response.

When a small blood sample is combined with the custom particles and placed into the acoustic pipette, sound waves push the particles to the side of a chamber where they are trapped, allowing the rest of the blood to be flushed away. The remaining biomarkers attached to the particles are then tagged with fluorescent markers and illuminated with lasers to quantify their presence. This entire process takes less than 70 minutes and is within a device small enough to fit in the palm of a hand. The pipette and particle system, detailed in a new paper published in the journal Science Advances, shows that it can provide the same level of sensitivity and specificity as a gold-standard clinical test while simplifying the workflow significantly. Future enhancements could further decrease testing time, enabling blood diagnostics to be conducted right at the patient’s bedside. This could be particularly beneficial for determining whether a patient has an infectious disease, assessing their viral load, and monitoring how quickly it increases. Additionally, the device could potentially be used to measure antibodies to establish the need for booster shots, test for allergies, or detect proteins linked to certain cancers.

“We’ve developed a technology that is very user-friendly, can be deployed in various settings, and provides valuable diagnostic information in a short time frame,” said senior author Wyatt Shields, assistant professor in the Department of Chemical and Biological Engineering at CU Boulder. “We think this has a lot of potential to address some of the longstanding challenges that have come from having to take a blood sample from a patient, haul it off to a lab and wait to get results back.”

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Flow Cytometer
BF – 710
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Scientists have developed tool to predict sepsis in apparently healthy newborns (Photo courtesy of 123RF)

Genetic Signature in Newborns Predicts Neonatal Sepsis Before Symptoms Appear

Neonatal sepsis, which occurs due to the body’s abnormal response to severe infection within the first 28 days of life, results in approximately 200,000 deaths globally each year. This condition affects around 1.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Low NBR1 levels in hepatic stellate cells enhance interferon signaling in human hepatocellular carcinoma (Photo courtesy of Moscat and Diaz-Meco labs)

Biomarker Could Predict Immunotherapy Response in Liver Cancer

Until recently, patients diagnosed with hepatocellular carcinoma had limited treatment options, with existing therapies extending life by only a few months. Immunotherapy has emerged as a new alternative... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.