We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment

By LabMedica International staff writers
Posted on 21 Oct 2024
Print article
Image: Researchers have developed a method to quickly identify the most appropriate treatments for bacterial infections (Photo courtesy of Shutterstock)
Image: Researchers have developed a method to quickly identify the most appropriate treatments for bacterial infections (Photo courtesy of Shutterstock)

For patients with bacterial infections, timely treatment with the appropriate antibiotics significantly improves their chances of recovery. Current methods for identifying which antibiotics will be effective for each patient involve culturing bacteria from the patient in a laboratory, a process that takes several days to provide results. During this time, patients are often prescribed broad-spectrum antibiotics, which can create drug-resistant infections—a major public health concern. Now, an innovative diagnostic approach could potentially enable patients with bacterial infections to receive the most effective treatment more quickly, thereby reducing the reliance on broad-spectrum antibacterials.

The method, named Genotypic and Phenotypic Antibiotic Susceptibility Testing through RNA detection, or GoPhAST-R, has been developed by researchers at the Broad Institute of MIT and Harvard, in collaboration with Massachusetts General Hospital (Cambridge, MA, USA). This technique analyzes both the growth and genetic activity of bacteria to quickly assess the pathogen's susceptibility to various antibiotics. In the GoPhAST-R approach, bacterial samples are exposed to a range of antibiotics, after which an RNA detection platform is used to identify distinct patterns of change in messenger RNA expression, which indicate differences in bacterial gene activity. These mRNA changes occur within minutes of antibiotic exposure in drug-susceptible bacteria, while they do not appear in drug-resistant strains. Additionally, the method investigates genes associated with antibiotic resistance, providing insights into the underlying bacterial mechanisms and suggesting potential therapeutic options. The researchers have also demonstrated the approach's effectiveness in a pilot study involving blood cultures from patients receiving inpatient treatment for infections.

In their previous work with a limited number of patient samples, the research team demonstrated that GoPhAST-R could ascertain antibiotic susceptibility in under four hours after bacteria were detected in a blood culture, compared to 28-40 hours using conventional clinical laboratory techniques. In the new study, they expanded the clinical pilot to encompass blood samples from 42 patients hospitalized with infections caused by Escherichia coli or Klebsiella pneumoniae, which are among the most common pathogens responsible for bloodstream infections. The researchers exposed the blood cultures to nine different antibiotics from three distinct classes and subsequently conducted transcriptional profiling on the NanoString platform. They analyzed mRNA changes in 10 genes for each antibiotic class, along with a select few genes that confer resistance to beta-lactam antibiotics. According to a paper published on the pre-print server medRxiv and findings reported in the Journal of Clinical Microbiology, their results demonstrated 95% agreement with those obtained from gold-standard growth-based assays for antibiotic susceptibility.

"In this pilot, we've shown that GoPhAST-R is an approach that can work well in the clinic," said study senior author Roby Bhattacharyya, an associate member at the Broad Institute of MIT and Harvard. "The next step will be to show GoPhAST-R's utility in making decisions about patient care in real time. We'd love to one day see it as an assay that can be employed in hospitals everywhere, to help patients get more effective treatments without promoting drug resistance."

Related Links:
Broad Institute of MIT and Harvard

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Scientists have developed tool to predict sepsis in apparently healthy newborns (Photo courtesy of 123RF)

Genetic Signature in Newborns Predicts Neonatal Sepsis Before Symptoms Appear

Neonatal sepsis, which occurs due to the body’s abnormal response to severe infection within the first 28 days of life, results in approximately 200,000 deaths globally each year. This condition affects around 1.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Low NBR1 levels in hepatic stellate cells enhance interferon signaling in human hepatocellular carcinoma (Photo courtesy of Moscat and Diaz-Meco labs)

Biomarker Could Predict Immunotherapy Response in Liver Cancer

Until recently, patients diagnosed with hepatocellular carcinoma had limited treatment options, with existing therapies extending life by only a few months. Immunotherapy has emerged as a new alternative... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.