We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Malaria Diagnosed from Drop of Blood or Saliva

By LabMedica International staff writers
Posted on 13 Dec 2012
Print article
Image: The high sensitivity is achieved by performing the REEAD technology within droplets surrounded by oil. The malaria parasites are distributed in the picoliter droplet, where they react effectively with the other components of the REEAD technology. (Photo courtesy of Sissel Juul and Birgitta Knudsen).
Image: The high sensitivity is achieved by performing the REEAD technology within droplets surrounded by oil. The malaria parasites are distributed in the picoliter droplet, where they react effectively with the other components of the REEAD technology. (Photo courtesy of Sissel Juul and Birgitta Knudsen).
Scientists have developed a new method for diagnosing malaria based on measuring the activity of an enzyme called topoisomerase I from the Plasmodium parasite.

The technology on which the method is based is called Rolling Circle-Enhanced Enzyme Activity Detection (REEAD), which makes it possible to diagnose malaria from a single drop of blood or saliva. This method is more time-effective and cost-effective than current diagnostic methods, and can be performed by personnel who have no specialized training. It can therefore be used in low-resource areas without the use of expensive equipment, clean water, or electricity.

The REEAD-based method distinguishes itself from other quick-test methods because it can measure whether a given Plasmodium infection is resistant to drugs. The newly developed technology is also the only quick-test method that makes it possible to diagnose the less common malaria parasites (P. ovale, P. knowlesi and P. malariae) in addition to the most common Plasmodium parasites (P. falciparum and P. vivax).

The high sensitivity is achieved by performing the REEAD technology within droplets surrounded by oil. The malaria parasites are distributed in the picoliter droplet, where they react effectively with the other components of the REEAD technology. The new method amplifies the signal from the malaria parasites since each parasite can give rise to more DNA molecules using the REEAD technology. Under the microscope, each DNA product is seen as a red dot.

The sensitivity, combined with its ability to detect infection in very small samples of blood or saliva, makes the method suitable for large-scale screening projects. This is of great importance in areas where the disease is close to being eradicated, and where it is therefore essential to identify and treat all patients infected with one of the above-mentioned parasites–even those who do not show symptoms of the disease.

Scientists who developed this method were led by Associate Professor Birgitta Knudsen, who is affiliated with the Interdisciplinary Nanoscience Centre (iNANO) and the Department of Molecular Biology and Genetics, Aarhus University (Denmark). Colleagues from Denmark (Department of Pathology and Department of Clinical Medicine, Aarhus University Hospital) and abroad (Duke University, University of Rome, University of St Andrews and University of Lyon) contributed to this project.

“This combination of molecular biologists, doctors, engineers, and statisticians has been important for our success in developing the new method,” said Prof. Knudsen.

The study was published in the November 2, 2012, edition of ACS Nano.

Related Links:
Aarhus University

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: This medium is used to grow malaria parasites (Photo courtesy of Kyle Dykes/UC San Diego Health Sciences)

New Approach to Help Predict Drug Resistance in Malaria and Infectious Diseases

Malaria, a disease transmitted by mosquitoes that affects millions worldwide, remains a significant public health concern, especially in tropical and subtropical regions. Despite significant efforts to... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.