We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Faster Method Identifies Salmonella Strains

By LabMedica International staff writers
Posted on 18 Jun 2013
Print article
Image: Scanning electron micrograph of Salmonella bacteria (Photo courtesy of US Centers for Disease Control).
Image: Scanning electron micrograph of Salmonella bacteria (Photo courtesy of US Centers for Disease Control).
A sequence-based subtyping approach may be able to reduce by more than half the time it takes health officials to identify Salmonella strains.

Rapid, efficient, and accurate methods are required for the identification of specific strains of serovar Newport during outbreak allowing epidemiological investigators to identify the exact strains of Salmonella that make people ill and to more quickly find and eliminate the source of the disease.

Microbiologists at the Pennsylvania State University (White Oak, PA, USA) developed a novel approach to identify strains of Salmonella enterica subspecies enterica serovar Newport. The method focuses on two virulence genes and two novel regions of Salmonella DNA called clustered regularly interspaced short palindromic repeats, or CRISPRs. The scientists devised a method of multivirulence-locus sequence typing, or MVLST, that can detect strain-specific differences in the DNA at these four locations. The method is designated as CRISPR-MVLST.

A total of 84 clinical isolates of serovar Newport were obtained and selected systematically over five years. The isolates received closest to the 1st and 15th of each month from 2007 to 2011 were selected to represent an unbiased collection of human clinical isolates. The investigators used polymerase chain reaction amplification (PCR), DNA sequencing, and sequence analysis and sequence type assignment to study the isolates. Toward the end of the project, they applied their analysis to a Salmonella outbreak, associated with tomatoes that occurred in Pennsylvania in summer 2012 in which 37 people got sick.

The authors concluded that the advantages of CRISPR-MVLST are the potential automation of the procedure, the ability to conduct this analysis in a high-throughput manner, and that sequence data are inherently more manageable for downstream applications such as phylogenetic and evolutionary analyses than are pulse field gel electrophoresis (PFGE) data.

Nikki Shariat, PhD, the lead author of the study said, “Right now, public-health laboratories use a technique called PFGE, to subtype Salmonella strains, and it normally takes one to three days to identify a specific strain. The technique we devised often takes just one day. Fifty percent of bacteria have CRISPR regions and using these for identification has been done with quite a few bacteria, such as Mycobacterium tuberculosis, as well as with some that cause foodborne illness, such as Campylobacter and Escherichia coli.” The study was published on May 15, 2013, in the Journal of Clinical Microbiology.

Related Links:
The Pennsylvania State University



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Liquid Based Cytology Production Machine
LBP-4032
New
Urine Strips
11 Parameter Urine Strips

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.