Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Faster Method Identifies Salmonella Strains

By LabMedica International staff writers
Posted on 18 Jun 2013
A sequence-based subtyping approach may be able to reduce by more than half the time it takes health officials to identify Salmonella strains.

Rapid, efficient, and accurate methods are required for the identification of specific strains of serovar Newport during outbreak allowing epidemiological investigators to identify the exact strains of Salmonella that make people ill and to more quickly find and eliminate the source of the disease.

Microbiologists at the Pennsylvania State University (White Oak, PA, USA) developed a novel approach to identify strains of Salmonella enterica subspecies enterica serovar Newport. More...
The method focuses on two virulence genes and two novel regions of Salmonella DNA called clustered regularly interspaced short palindromic repeats, or CRISPRs. The scientists devised a method of multivirulence-locus sequence typing, or MVLST, that can detect strain-specific differences in the DNA at these four locations. The method is designated as CRISPR-MVLST.

A total of 84 clinical isolates of serovar Newport were obtained and selected systematically over five years. The isolates received closest to the 1st and 15th of each month from 2007 to 2011 were selected to represent an unbiased collection of human clinical isolates. The investigators used polymerase chain reaction amplification (PCR), DNA sequencing, and sequence analysis and sequence type assignment to study the isolates. Toward the end of the project, they applied their analysis to a Salmonella outbreak, associated with tomatoes that occurred in Pennsylvania in summer 2012 in which 37 people got sick.

The authors concluded that the advantages of CRISPR-MVLST are the potential automation of the procedure, the ability to conduct this analysis in a high-throughput manner, and that sequence data are inherently more manageable for downstream applications such as phylogenetic and evolutionary analyses than are pulse field gel electrophoresis (PFGE) data.

Nikki Shariat, PhD, the lead author of the study said, “Right now, public-health laboratories use a technique called PFGE, to subtype Salmonella strains, and it normally takes one to three days to identify a specific strain. The technique we devised often takes just one day. Fifty percent of bacteria have CRISPR regions and using these for identification has been done with quite a few bacteria, such as Mycobacterium tuberculosis, as well as with some that cause foodborne illness, such as Campylobacter and Escherichia coli.” The study was published on May 15, 2013, in the Journal of Clinical Microbiology.

Related Links:
The Pennsylvania State University




New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.