We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Interferon Gamma Assay Detects Chronic Q Fever

By LabMedica International staff writers
Posted on 17 Jul 2013
Print article
Image: Coxiella burnetii (Photo courtesy of Rocky Mountain Laboratories).
Image: Coxiella burnetii (Photo courtesy of Rocky Mountain Laboratories).
The diagnosis of Q fever, caused by the intracellular pathogen Coxiella burnetii, relies mainly on serology and skin tests (STs)—both with drawbacks.

A C. burnetii-specific interferon gamma (IFN-γ) production has been used as a diagnostic tool for past Q fever infection that circumvented most of these shortcomings, and was compared with serology and ST.

Scientists at the Radboud University (Nijmegen, The Netherlands) enrolled 1,525 individuals from an endemic area with a risk for chronic Q fever. IFN-γ production was measured after in vitro stimulation of whole blood with C. burnetii antigens. Various formats using different C. burnetii antigens were tested and serology and ST were performed on all individuals.

The amount of IFN-γ was measured by enzyme-linked immunosorbent assay (ELISA). Serological and ST results were unknown to those performing the assay. Net IFN-γ production was expressed as the concentration of IFN-γ in stimulated samples minus that in negative controls. If either IFN-γ production in the negative control exceeded 24 pg/mL, which is three times the lower detection limit of the ELISA, or the IFN-γ production after phytohemagglutinin (PHA) stimulation was less than24 pg/mL without the C. burnetii-stimulated aliquots exceeding 24 pg/mL, then the assay was considered inconclusive.

In all assay formats, C. burnetii-specific IFN-γ production was higher in seropositive or ST-positive subjects than in seronegative and ST-negative subjects. Whole blood incubated for 24 hours with the heat-inactivated laboratory C. burnetii Nine Mile strain showed optimal performance. After excluding subjects with equivocal serology and/or borderline ST results, IFN-γ production was 449 ± 82 pg/mL in 219 positive individuals, but only 21 ± 3 pg/mL in 908 negative subjects. The IFN-γ assay had a sensitivity of 87.0% and the specificity was 90.2%, which was similar to the combination of serology and ST at 83.0% sensitivity and 95.6% specificity.

The authors concluded that specific IFN-γ detection is a novel diagnostic assay for previous C. burnetii infection and shows similar performance and practical advantages over serology and ST. However, they recommend that the assay as being complimentary to serological tests, with added value in cases with equivocal serology. The additional value of the assay in active Q fever disease, both the acute and chronic form, is currently being addressed. The study was originally published online on March 5, 2013, in the journal Clinical Infectious Diseases.

Related Links:

Radboud University



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.