We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genome Sequencing of MRSA Infection Predicts Disease Severity

By LabMedica International staff writers
Posted on 24 Apr 2014
Print article
Image: The Genome Analyzer IIx (Photo courtesy of Illumina).
Image: The Genome Analyzer IIx (Photo courtesy of Illumina).
Image: The highly toxic methicillin-resistant Staphylococcus aureus (MRSA) strain (top) and less toxic strain (bottom) cultured on a blood agar plate (Photo courtesy of Ruth Massey).
Image: The highly toxic methicillin-resistant Staphylococcus aureus (MRSA) strain (top) and less toxic strain (bottom) cultured on a blood agar plate (Photo courtesy of Ruth Massey).
Bacterial pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), cause disease in part due to toxicity, or the bacterium's ability to damage a host's tissue.

The spread of the antibiotic-resistant pathogen remains a concerning public health problem, especially among doctors trying to determine appropriate treatment options for infected patients.

Microbiologists at the University of Bath (UK) and a team of international scientists used whole genome sequences from 90 MRSA isolates to identify over 100 genetic loci associated with toxicity. Bacterial adhesion to human fibronectin and fibrinogen was assessed and adherent bacteria were calculated by using the crystal violet method and absorbance measured at A595 using a microtiter plate reader. The toxicity of individual isolates was assayed in three ways.

The identification of genetic variation in the clinical isolates was studied using unique index-tagged libraries created for each sample, and up to 12 separate libraries were sequenced in each of eight channels in the Genome Analyzer GAIIx cells (Illumina; San Diego, CA, USA) with 75-base paired-end reads.

The authors found that by using whole genome sequences from 90 MRSA isolates they were able to identify over 100 genetic loci associated with toxicity and despite belonging to the same ST239 clone, the isolates varied greatly in toxicity. Importantly, the highly toxic isolates shared a common genetic signature. By looking for this signature in the MRSA genome, the investigators were able to predict which isolates were the most toxic and thus more likely to cause severe disease when used to infect mice.

Ruth C. Massey, PhD, the lead author of the study, said, “As the cost and speed of genome sequencing decreases, it is becoming increasingly feasible to sequence the genome of an infecting organism. In a clinical setting, sequencing may be useful for deciding the course of MRSA treatment. For example, a clinician may treat a highly toxic infection more aggressively, including prescribing certain antibiotics known to reduce toxin expression. The patient also may be monitored more closely for complications and isolated from others to help control the spread of infection.” The study was published on April 9, 2014, in the journal Genome Research.

Related Links:

University of Bath
Illumina


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.