We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Magnetic Resonance System Rapidly Determines Malaria Parasite Load

By LabMedica International staff writers
Posted on 07 Sep 2014
A novel diagnostic technique based on magnetic resonance relaxometry (MRR) was able to rapidly and accurately determine severity of malaria infection without using chemical or immunolabeling.

When malaria parasites grow within host red blood cells they metabolize large amounts of hemoglobin and convert it into hemozoin crystallites. More...
These hemozoin particles possess relatively large paramagnetic susceptibility, which induces substantial changes in the transverse relaxation rate of proton nuclear magnetic resonance of infected red blood cells. The relaxation rate is a measure of how the nuclear magnetic resonance of hydrogen atoms is affected by the proximity of other magnetic particles – in this case hemozoin.

Researchers at the Massachusetts Institute of Technology (Cambridge, USA) and colleagues at Nanyang Technical University (Singapore) prepared a benchtop size MRI instrument around a 0.5-Tesla magnet, which was less expensive and powerful than the 2- or 3-Tesla magnets typically required for MRI diagnostic imaging. They used this instrument to determine numbers of Plasmodium falicparum parasites growing in vitro and Plasmodium berghei parasites taken from infected mice. Blood samples of 10 microliters or less were concentrated by centrifugation and then analyzed without further preparation or labeling.

Results revealed that a parasitemia level of fewer than ten parasites per microliter in a volume below 10 microliters of whole blood was detected in a few minutes for cultured Plasmodium falciparum parasites and in vivo with Plasmodium berghei-infected mice.

"Hemozoin crystals are produced in all four stages of malaria infection, including the earliest stages, and are generated by all known species of the Plasmodium parasite," said senior author Dr. Jongyoon Han, professor of electrical engineering and biological engineering at the Massachusetts Institute of Technology. "Also, the amount of hemozoin can reveal how severe the infection is, or whether it is responding to treatment. There are a lot of scenarios where you want to see the number, rather than a yes or no answer. There is real potential to make this into a field-deployable system, especially since you do not need any kind of labels or dye. It is based on a naturally occurring biomarker that does not require any biochemical processing of samples."

A paper describing the technique was published in the August 31, 2014, online edition of the journal Nature Medicine.

Related Links:

Massachusetts Institute of Technology
Nanyang Technical University



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.