We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Single Rapid Test Detects Known and Unknown Pathogens

By LabMedica International staff writers
Posted on 10 Nov 2014
Print article
Image: Loading a fluorescently-labeled viral DNA sample onto the Microbial Detection Array (Photo courtesy of Lawrence Livermore National Laboratory).
Image: Loading a fluorescently-labeled viral DNA sample onto the Microbial Detection Array (Photo courtesy of Lawrence Livermore National Laboratory).
Diagnostic technology developed for rapid detection of pathogens in the wounds of soldiers has been licensed to a private company that intends to use it to create new medical laboratory tests.

The Lawrence Livermore Microbial Detection Array (LLMDA) is designed to improve on two pathogen identification techniques: Polymerase chain reaction (PCR) analysis and DNA sequencing. PCR diagnostic techniques can process no more than 50 DNA signatures at one time and the likelihood of discovering new species are low with PCR. The new technology is capable of identifying thousands of bacteria and viruses in a single test.

Scientists at the Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA) developed the LLMDA. The process begins by purifying DNA or ribonucleic acid (RNA) from a blood or stool sample. The purified DNA or RNA is labeled with a fluorescent dye, and then pipetted onto the microarray which sits on top of an incubator heated to 42 °C. The microarray contains nearly 400,000 probes arranged in a checkerboard pattern on a 2.5 × 7.5-cm glass slide. Scientists examine these probes with a fluorescent scanner and analysis software. The microarray’s checkerboard has several dozen squares for each of the thousands of organisms sequenced to date. That allows it to simultaneously examine multiple regions from each organism.

From a study that evaluated 124 wound samples from 44 soldiers injured in Iraq and Afghanistan using LLDMA, the scientists found certain bacteria, such as Pseudomonas species and Acinetobacter baumannii, which are common hospital-related infections, to be associated with wounds that did not heal successfully. Bacteria often related to the gastrointestinal system, such as Escherichia coli and Bacteroides species, were also often found in wounds that did heal successfully. The test was able to detect within 24 hours any virus or bacteria that has been sequenced and included among the array's probes.

The LLNL scientists are already building on the capacity of this microbial array. They are currently testing a next-generation LLMDA that contains 2.1 million probes representing about 178,000 sequences from 5,700 viruses and 785,000 sequences from thousands of bacteria. The new version also includes about 237,000 sequences from hundreds of fungi and about 202,000 sequences from 75 protozoa. Lawrence Livermore National Laboratory has licensed its microbial detection array technology to MOgene LC (St. Louis, MO, USA).

Related Links:
Lawrence Livermore National Laboratory
MOgene LC 


Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.