We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microchip Device for One Hour Antibiotic Resistance Testing

By LabMedica International staff writers
Posted on 08 Jun 2015
Print article
Image: Schematic of the antibiotic susceptibility testing device. Bacteria are cultured in miniature chambers, each of which contains a filter for bacterial capture and electrodes for readout of bacterial metabolism (Photo courtesy of the University of Toronto).
Image: Schematic of the antibiotic susceptibility testing device. Bacteria are cultured in miniature chambers, each of which contains a filter for bacterial capture and electrodes for readout of bacterial metabolism (Photo courtesy of the University of Toronto).
A novel electrochemical approach – designed to replace growth or fluorescent tests for drug resistance – can determine within one hour whether a culture of bacteria is susceptible to a particular antibiotic.

At present, the rapid determination of antibiotic susceptibility is hindered by the requirement that, in existing devices, bacteria must be pre-cultured for two to three days to reach detectable levels.

To break this bottleneck, investigators at the University of Toronto (Canada) designed a "lab-on-chip" device containing a series of minute flow-through wells patterned onto a glass chip. Each well has the capacity for only two nanoliters of growth medium and has a filter composed of microbeads at the bottom. The bacterial culture is passed through the well together with the antibiotic being tested, and the organisms are trapped by the filter at the bottom of the well. The bacteria accumulate in the wells, where they remain trapped with the antibiotic and the signal molecule resazurin.

Viable bacteria metabolize resazurin into resorufin, changing its electrochemical signature. If the bacteria are killed by the antibiotic, they stop metabolizing resazurin, and the electrochemical signature of the sample does not change. If they are antibiotic-resistant, they continue to metabolize resazurin into resorufin, altering its electrochemical signature. Electrodes built directly into the chip detect this change,

This electrochemical phenotyping approach was shown to be effective with clinically-relevant levels of bacteria and provided results comparable to culture-based analysis. Results, however, were delivered on a much faster timescale, with resistance profiles available after a single hour of incubation.

"Guessing can lead to resistance to these broad-spectrum antibiotics, and in the case of serious infections, to much worse outcomes for the patient," said first author Justin Besant, a graduate research student at the University of Toronto. "We wanted to determine whether bacteria are susceptible to a particular antibiotic, on a timescale of hours, not days. We have a lot of bacteria in a very small space, so our effective starting concentration is much higher, and as the bacteria multiply and convert the resazurin molecule, it is effectively stuck in this nanoliter droplet—it cannot diffuse away into the solution, so it can accumulate more rapidly to detectable levels."

"The electronics for our electrochemical readout can easily fit in a very small benchtop instrument, and this is something you could see in a doctor's office, for example," said Justin Besant. "The next step would be to create a device that would allow you to test many different antibiotics at many different concentrations, but we are not there yet."

The microchip device for assessing antibiotic resistance was described in the May 13, 2015, online edition of the journal Lab on a Chip.

Related Links:

University of Toronto 


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Refrigerated Centrifuge
CAPPRondo Refrigerated Centrifuge
New
Urine Drug Test
Instant-view Propoxyphene Urine Drug Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.