We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Recent Mutations Responsible for Plague Bacteria's Virulence

By LabMedica International staff writers
Posted on 12 Jul 2015
Print article
Image: Scanning electron microscope micrograph showing a mass of Yersinia pestis bacteria in the foregut of an infected flea (Photo courtesy of the [US] National Institutes of Health).
Image: Scanning electron microscope micrograph showing a mass of Yersinia pestis bacteria in the foregut of an infected flea (Photo courtesy of the [US] National Institutes of Health).
A team of molecular microbiologists has found that acquisition of single protein early in its existence enabled the plague bacterium Yersinia pestis to invade lung tissue, but that it required later mutations of this gene to enable the organism to rapidly spread to the lymph nodes and cause the bubonic form of the disease.

Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses the enzyme plasminogen activator (Pla) on its surface, which has been suggested to play a role in bacterial dissemination.

Investigators at Northwestern University (Evanston, IL, USA) worked with ancestral strains of Y. pestis in mouse models. They found that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. However, at this stage the bacterium did not cause the fulminating form of pneumatic plague, nor could it disseminate to the lymph nodes to cause the bubonic form.

It became apparent that as Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimized protease activity. While this modification was unnecessary to cause pneumonic plague, the substitution was instead needed to efficiently induce the invasive infection associated with bubonic plague.

"Our findings demonstrate how Y. pestis had the ability to cause a severe respiratory disease very early in its evolution," said senior author Dr. Wyndham Lathem, assistant professor of microbiology and immunology at Northwestern University. "This research helps us better understand how bacteria can adapt to new host environments to cause disease by acquiring small bits of DNA. Our data suggests that the insertion and then subsequent mutation of Pla allowed for new, rapidly evolving strains of disease. This information can show how new respiratory pathogens could emerge with only small genetic changes."

The study was published in the June 30, 2015, online edition of the journal Nature Communications.

Related Links:
Northwestern University


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.