We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lower Respiratory Tract Pathogens Analyzed by Breath Test

By LabMedica International staff writers
Posted on 14 Jul 2015
Print article
Image:  Thermal desorption/gas chromatography/time-of-flight mass spectrometry (TD/GC-MS) (Photo courtesy of Markes International).
Image: Thermal desorption/gas chromatography/time-of-flight mass spectrometry (TD/GC-MS) (Photo courtesy of Markes International).
Image: The Water’s GCT Premier benchtop orthogonal acceleration time-of-flight mass spectrometer (Photo courtesy of the University College Dublin).
Image: The Water’s GCT Premier benchtop orthogonal acceleration time-of-flight mass spectrometer (Photo courtesy of the University College Dublin).
Healthcare associated infections, including ventilator associated pneumonia, are difficult to diagnose and treat, and are associated with significant morbidity, mortality and cost.

Chemically analyzing breath volatile profiles that were associated with the presence of clinically relevant pathogens in the lower respiratory tract from patients in intensive care can reveal bacterial infection in ventilated patients at risk of developing pneumonia.

Scientists at the University of Manchester (UK) and their colleagues recruited patients undergoing invasive mechanical ventilation in an intensive care unit. Clinical details related to the patient diagnoses and investigations were recorded, including data related to physiology, radiology, microbiology as well as blood biochemistry and hematology. In addition serum was analyzed for the inflammatory cytokines interleukin (IL)-6, IL-10 and procalcitonin. Samples were collected from 54 patients and assent obtained for 46 consultees between January and July 2010.

A novel sampling apparatus was developed for the specific purpose of capturing volatiles from the distal intratracheal air of mechanically ventilated patients. Analysis of breath samples was performed by thermal desorption/gas chromatography/time-of-flight mass spectrometry (TD/GC-MS, Markes International; Llantrisant, UK), and the GCT Premier mass spectrometer, (Waters Corp; Manchester, UK). Samples were also cultured for pathogens.

The dominant factors affecting breath sample analysis were the individual breath profile and duration of intubation. When these were taken into account, clear separation was seen between breath profiles at each time point by the presence/absence of pathogens. The most commonly isolated pathogens were Haemophilus influenzae found in 12 samples from 10 patients and Staphylococcus aureus found in 18 samples from 10 patients. Thirty-one (67%) patients had negative respiratory and blood culture samples at baseline, and 20 (43%) remained culture-negative for the duration of the study, although only two of these were sampled on more than two occasions.

Compounds found to be lower in concentration in the breath of infected versus non-infected patients included ethanol, 2-methyl cyclopentanone, heptane, and N-cyclohexyl-N′(2-hydroxyethyl)thiourea, while those found in higher concentration included 3-carene, n-butyric acid 2-ethylhexyl ester , nonanal and 2,6,11,15-tetramethyl-hexadecane. Multivariate analysis showed none of the blood inflammatory biomarkers measured, procalcitonin, IL10, IL6, IL10/6 ratio, total white cell count, predicted the presence of lower respiratory tract pathogens.

The authors concluded that volatile metabolites in the breath of ventilated patients at high risk of developing ventilator associated pneumonia (VAP) show distinct patterns that enable the differentiation of patients with and without pathogens in the airway. The study was published in the April 2015 issue of the journal Thorax.

Related Links:

University of Manchester 
Markes International
Waters Corp. 


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.