We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutated Group B Streptococcus Causes Neonatal Sepsis

By LabMedica International staff writers
Posted on 01 Sep 2015
Print article
Image: Gram stain of Streptococcus agalactiae or group B streptococcus (Photo courtesy of Institut Pasteur).
Image: Gram stain of Streptococcus agalactiae or group B streptococcus (Photo courtesy of Institut Pasteur).
Streptococcus agalactiae or group B Streptococcus is a commensal of the human gut and genitourinary tract, and a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination.

The leading cause of early onset group B Streptococcus (GBS) infections in infants is thought to be aspiration of GBS-contaminated amniotic or vaginal fluid, leading to pneumonia or sepsis and in later onset cases, which develop after two to three weeks, may result in meningitis.

Microbiologists at the Institut Pasteur (Paris, France) and their colleagues compared for the first time samples of GBS from pairs of infected newborns and their mothers. They performed whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Within the detected SNPs, 16 appear to have been fixed in the sampled population, whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the response regulator CovR (covRS) locus, known to encode a major regulatory system of virulence.

A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein ribbon gene (Rib). Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination to their mothers.

The scientists found that in five out of the 19 sampled newborns, mutations with a potential role in promoting virulence had occurred in GBS. Philippe Glaser, PhD, the group leader said, “In most cases, GBS is just naturally virulent in neonates. The genomic changes in GBS that were found only in a few cases were genetically identical in most of the mother-infant pairs analyzed.” The study was published on August 17, 2015, in the Journal of Bacteriology.

Related Links:

Institut Pasteur 


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.