We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated Image Analysis Software Reliably Identifies Positive MRSA

By LabMedica International staff writers
Posted on 24 Feb 2016
Print article
Image: Automated colony-scoring of chromogenic media agar plates for the detection of MRSA using the WASPLab image analysis software (Photo courtesy of COPAN Group/PRNewsFoto).
Image: Automated colony-scoring of chromogenic media agar plates for the detection of MRSA using the WASPLab image analysis software (Photo courtesy of COPAN Group/PRNewsFoto).
In a unique-in-its-class digital microbiology study of almost 60,000 samples, new WASPLab software developed for automated colony-scoring of chromegenic media plates provided superior detection of methicillin-resistant Staphylococcus aureus (MRSA).

The groundbreaking results came from an international multicenter study, testing 57,690 samples, where the WASPLab platform software “Chromogenic Detection Module” (CDM) from COPAN Diagnostics, Inc. (Murrieta, CA, USA) detected and segregated positive from negative MRSA samples using chromogenic agar with a sensitivity of 100% and a specificity of 90%–96% (varying by location). The software detected an additional 153 positive MRSA patients that were missed by manual reading.

The study's sample size and level of sensitivity of 100% “makes this study unmatched in the industry," said Norman Sharples, CEO, Copan Diagnostics.

CDM utilizes an algorithm to identify presence of colonies on a plate and distinguish between different colors to group into negative and positive cultures. The study focused on identifying MRSA using chromogenic agar from 3 different manufacturers (BD Diagnostics, bioMeriéux, Bio-Rad Laboratories) that produce growth with different pigmentation colors. The cultures were read automatically by WASPLab CDM and manually by a laboratory professional. The laboratory professionals were blinded to the software's results.

CDM's reading threshold is intentionally set with a high level of prudency designed so it does not miss a positive MRSA culture. In fact, in this large study, CDM never reported any manual positive plates as negative, demonstrating 100% sensitivity. The 90%–96% specificity score varies by location due to the conservative threshold of the CDM settings, which set the limitations low in order to avoid any "false negative" interpretation. Most importantly, the data from this study suggests that the CDM software is somewhat more sensitive than manual reading of plate cultures.

The software’s “capability reduces the hands-on time considerably,” said Dr. Sharples, “CDM is not meant to be used without the technologist, but to provide the technologist with valuable tools that rapidly pre-screen cultures, detect the presence of specific organisms of interest or known pathogens, then segregate cultures into positive and negative groups that enable faster turnaround times and actionable results within the therapeutic window."

The results of the data show that the WASPLab CDM can be used to accurately sort regardless of the chromogenic substrate. Its application for MRSA is only the first step in a series of algorithms developed by COPAN and available to WASPLab users to further the relevance and speed of laboratory results.

"Clinical microbiology relies heavily on the reading and interpretational skills of the technologist and microbiologist. In a time of diminishing resources and increasing work volumes the advancement in these imaging algorithms supports the value of digital microbiology and full laboratory automation for the continued output of quality results and improved patient care," concluded Dr. Sharples.

The study, by Faron ML et al., was published online ahead of print December 30, 2015, in the Journal of Clinical Microbiology.

Related Links:

COPAN Group


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.