We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immune Cells Adapt Inefficiently in Patients with Uncontrolled HIV

By LabMedica International staff writers
Posted on 28 Mar 2016
Print article
Image: The FACSAria III cell sorter instrument (Photo courtesy of BD Biosciences).
Image: The FACSAria III cell sorter instrument (Photo courtesy of BD Biosciences).
Antibodies derived from a type of immune cell found in unusually high numbers in human immunodeficiency virus (HIV)-infected individuals with chronically uncontrolled virus levels are less effective at neutralizing HIV than antibodies derived from a different type of immune cell more common in people without HIV.

HIV infection leads to numerous immunologic abnormalities, especially in individuals whose viremia is not well controlled, either naturally or by antiretroviral therapy (ART). B cells are not direct targets for HIV replication; however, direct and indirect consequences of viral replication such as immune activation and lymphopenia lead to numerous B cell abnormalities over the course of infection.

Scientists at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) and their colleagues collected serum and/or leukapheresis products from 25 chronically infected HIV-viremic individuals. The donors were not taking antiretroviral drugs to suppress the level of HIV in their blood, or viral load, at the time of the study. Like many individuals with persistent levels of HIV, the donors' blood samples had abnormally high numbers of immune cells called tissue-like memory (TLM) B cells, compared with resting memory (RM) B cells, which account for the majority of memory B cells in people without HIV.

Peripheral blood mononuclear cells (PBMCs) were obtained by density-gradient centrifugation. Mature CD10-B cells were isolated from PBMCs by negative magnetic bead–based selection using a B cell enrichment cocktail that was supplemented with tetrameric anti-CD10 monoclonal antibodies (mAb) (STEMCELL Technologies; Vancouver, BC, Canada). Immunophenotyping to identify suitable subjects for sorting was performed using the following anti-human mAbs. Fluorescent activated cell sorting (FACS) analyses were performed on a FACSCanto II flow cytometer and sorting of B cell populations and of single HIV-specific B cells into 96-well polymerase chain reaction (PCR) plates was performed on a modified 3-laser FACSAria instrument (BD Biosciences; San Jose, CA, USA).

Generally, as B cells divide in response to a pathogen like HIV, genes that produce infection-fighting antibodies mutate, and descendant cells producing the most effective antibodies predominate. Despite the fact that TLM B cells generally divided more frequently than their RM counterparts, the scientists found that the antibodies derived from TLM B cells showed genetic evidence of fewer adaptive mutations than those derived from RM B cells. In turn, these antibodies were less likely to effectively neutralize HIV than those derived from RM B cells. The RM B cells, in contrast, showed evidence of generating antibodies with more helpful mutations.

The authors concluded that nonconventional TLM B cells overrepresented in the peripheral blood of chronically infected HIV-viremic individuals show reduced affinity maturation compared with their clonally related conventional RM counterparts, despite evidence of having undergone more cell divisions. The study was published on March 17, 2016, in the journal JCI Insight.

Related Links:

US National Institute of Allergy and Infectious Diseases 
STEMCELL Technologies 
BD Biosciences 


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.