We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biosensor Technology Enables Rapid Detection of Flu Virus

By LabMedica International staff writers
Posted on 12 Jun 2017
Print article
Image: Human influenza virus recognition by sugar-modified conducting polymers. A new conducting polymer was developed for detecting specific interaction of trisaccharide with hemagglutinin in the envelope of the human influenza A virus (H1N1) by electrical manners (Photo courtesy of the Tokyo Medical and Dental University).
Image: Human influenza virus recognition by sugar-modified conducting polymers. A new conducting polymer was developed for detecting specific interaction of trisaccharide with hemagglutinin in the envelope of the human influenza A virus (H1N1) by electrical manners (Photo courtesy of the Tokyo Medical and Dental University).
A research team has developed a voltage-sensor for early detection of influenza virus A (H1N1) that is almost 100 times more sensitive than conventional tests, and can distinguish between human and avian strains.

Researchers at Tokyo Medical and Dental University (TMDU; Tokyo, Japan) developed the sensor for early detection of even very low virus concentrations. Such early-stage diagnosis is crucial for averting a potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. Conventional tests for detecting the flu virus are often slow and expensive, and can miss early viral infections. In contrast, the new biosensor measures tiny changes in voltage in an electrically conductive polymer to quickly detect virus concentrations almost 100 times smaller than the limit of currently available kits.

Conductive polymers are a class of carbon-based molecules that conduct electricity, but can also be used in biological environments. Biomolecules can be easily attached to the polymers, allowing them to bind with specific targets. In this study, poly(3,4-ethylenedioxythiophene) (PEDOT) was modified with a functional group that binds with the H1N1 human influenza virus, but not avian influenza strains.

“Conducting polymers have several advantages over inorganic counterparts,” explained corresponding author Yuji Miyahara, “These include the ability to conduct both electrical and ionic carriers, mechanical flexibility, low cytotoxicity, low-cost production by casting or printing, and tunable properties via chemical synthesis or doping.”

To construct the biosensor, the polymer film was placed between two electrodes. When a solution containing H1N1, which carries a tiny positive charge on its exterior shell, was added, some of the viruses stuck to the polymer and increased the voltage measured by the electrodes. This electrical method allows the sensor to detect the presence of miniscule amounts of the virus. Viral loads are often measured in hemagglutination units (HAU). The new sensor can detect viral concentrations as small as 0.013 HAU. By comparison, commercially available kits that use immunochromatographic tests only work for concentrations greater than about 1.13 HAU.

“The device is a good candidate for wearable monitoring and point-of-care testing,” added study coauthor Shoji Yamaoka.

The study, by Hai W et al, was published April 5, 2017, in the journal ACS Applied Materials & Interfaces.

Related Links:
Tokyo Medical and Dental University

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.