We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Solvatochromic Trehalose Probe Rapidly Detects TB

By LabMedica International staff writers
Posted on 13 Mar 2018
Print article
Image: A new technique that makes tuberculosis bacteria glow detects living Mycobacterium tuberculosis cells that have not been treated with drugs (left) but not those that have been treated (right) (Photo courtesy of Stanford University).
Image: A new technique that makes tuberculosis bacteria glow detects living Mycobacterium tuberculosis cells that have not been treated with drugs (left) but not those that have been treated (right) (Photo courtesy of Stanford University).
Despite its devastating toll on health, the bacteria causing tuberculosis (TB), Mycobacterium tuberculosis, can be hard to spot. Current tests rely on chemical stains and estimates put the sensitivity of these stains anywhere from 32% to 94%.

Better detection methods are sorely needed to combat TB, which killed more than 1.7 million people worldwide in 2016. A new staining technique has been developed that is quick and simple and detects the pernicious bacteria that are a major cause of deadly lung infection that is particularly common in developing countries.

A team of international scientists led by those at Stanford University (Stanford, CA, USA) designed a color-changing dye based on trehalose, a sugar that makes up the outer membrane of M. tuberculosis. The dye stained live bacteria within minutes, emitting fluorescence upon incorporation into the hydrophobic mycobacterial membrane. Heat-inactivated bacteria did not fluoresce, and drug-treated bacteria emitted reduced fluorescence.

The designed 4-N,N-dimethylamino-1,8-naphthalimide–conjugated trehalose (DMN-Tre) probe undergoes >700-fold increase in fluorescence intensity when transitioned from aqueous to hydrophobic environments. This enhancement occurs upon metabolic conversion of DMN-Tre to trehalose monomycolate and incorporation into the mycomembrane of Actinobacteria. DMN-Tre labeling enabled the rapid, no-wash visualization of mycobacterial and corynebacterial species without nonspecific labeling of Gram-positive or Gram-negative bacteria. Microscopy was performed on a Nikon A1R confocal microscope equipped with a Plan Fluor 60× oil immersion 1.30–numerical aperture objective.

In tests on sputum samples from 16 people with TB, DMN-Tre picked up M. tuberculosis cells in all of the samples. The new technique performed similarly to the standard, but more complex and time-consuming, labeling method based on the Auramine O stain, a dye that sticks to acids in bacterial cell walls. Human cells and other types of bacteria, both of which are plentiful in sputum samples, do not incorporate the molecule.

Unlike existing TB detection methods, DMN-Tre can also distinguish cells that are metabolically active from those that are not. Because the molecule relies on bacteria to actively incorporate it into the membrane, only healthy cells are labeled, whereas cells that are compromised by drug treatment do not label as well. That property may allow clinicians to monitor how well treatments are working in people, and perhaps even test whether certain mixtures of drugs would work against specific strains of M. tuberculosis. The study was published on February 28, 2018, in the journal Science Translational Medicine.

Related Links:
Stanford University

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.