We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutation Found Determines Nature of Host Response to MRSA Infection

By LabMedica International staff writers
Posted on 22 Sep 2019
Print article
Image: A scanning electron micrograph (SEM) of a human neutrophil ingesting MRSA (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: A scanning electron micrograph (SEM) of a human neutrophil ingesting MRSA (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A recent paper described the genetic factors that determine why some individuals develop chronic methicillin-resistant Staphylococcus aureus (MRSA) infections while others develop infections that resolve relatively quickly.

The severity and duration of MRSA infection varies widely between individuals. Host factors predisposing to persistent MRSA infection are poorly understood, although genetic association studies are beginning to identify potentially influential variants.

Investigators at Duke University (Durham, NC, USA) searched for such host factors by analyzing two sets of patients who had been closely matched by age, sex, health conditions, and other risk factors for MRSA bloodstream infections. Sixty-eight patients were included in the study; half with a persistent MRSA infection and half who had been able to clear the infection from their bloodstream. Whole-exome sequencing was used to pinpoint genomic differences between the two sets of patients.

Results revealed that a mutation located in the DNA of the DNMT3A region of chromosome 2p was expressed in about 62% of the patients who cleared their MRSA infection, while it was expressed in only 9% in those who had persistent infections.

In a further series of experiments, the investigators demonstrated that DNMT3A variants could alter host response to infection through increased methylation of key regulatory genes, which resulted in reduced interleukin-10 production and in turn, allowed for a more protective immune response that cleared infection.

"The increasing prevalence of antibiotic resistant staph infections has created an urgent need to better understand who is most susceptible to these difficult-to-treat S. aureus infections and why," said senior author Dr. Vance Fowler, professor of medicine, molecular genetics, and microbiology at Duke University. "Our study identifies a particular DNMT3A mutation that contributes to an increased ability to resolve MRSA infections. The mechanism for this appears to be increased methylation of gene regulatory regions, and reduced levels of the anti-inflammatory cytokine IL-10."

The MRSA paper was published in the September 16, 2019, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
Duke University

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Washer Disinfector
Tiva 8
New
CMV QC
Inactivated Cytomegalovirus High Control

Print article

Channels

Molecular Diagnostics

view channel
Image: The study explored how emerging plasma biomarkers are related to the diagnostic tests currently used in clinical routines (Photo courtesy of Shutterstock)

Study Offers New Insights into Alzheimer's Disease Biomarkers

As of November 14, 2024, the European Medicines Agency (EMA) has recommended, for the first time, a drug aimed at slowing the progression of Alzheimer's disease (AD). This marks a significant milestone... Read more

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.