We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




PCR Kit Developed for Detection of Q-fever Pathogen

By LabMedica International staff writers
Posted on 17 Oct 2019
Print article
Image: The BioPhotometer 6131 spectrophotometer/fluorometer (Photo courtesy of Eppendorf).
Image: The BioPhotometer 6131 spectrophotometer/fluorometer (Photo courtesy of Eppendorf).
Coxiella burnetii is an obligate intracellular bacterium that causes Q fever in animals and humans. The infection results from inhalation of a spore-like small-cell variant, and from contact with the milk, urine, feces, vaginal mucus or semen of infected animals.

Incubation period is usually two to three weeks. The most common manifestation is flu-like symptoms with abrupt onset of fever, malaise, profuse perspiration, severe headache, muscle pain, joint pain, loss of appetite, upper respiratory problems, dry cough, pleuritic pain, chills, confusion, and gastrointestinal symptoms, such as nausea, vomiting, and diarrhea. About half of infected individuals exhibit no symptoms.

Virologists at the Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (Kiev, Ukraine) developed a confirmatory polymerase chain reaction (PCR) for C. burnetii for diagnosis in Ukraine. The PCR assay targeted the outer membrane-associated gene com1 in C. burnetii. Oligonucleotide primers were selected that amplify a 689-bp DNA fragment of the com1 gene. The optimization of PCR amplification was accomplished by adjusting Mg2+ and dNTP concentrations in the PCR mixture, and testing different annealing temperatures.

Specificity of the designed primers was evaluated using a panel of DNA samples of various pathogens that were regarded as potentially present in the samples that would be tested. The specificity was evaluated using reference control DNA C. burnetii#5131 and C. burnetii Gritta strains. Concentration and purity of all DNA were evaluated using the spectrophotometer/fluorometer BioPhotometer 6131.

The assay proved highly sensitive and specific to C. burnetii DNA detection with a limit of detection (LOD) of 0.37 pg/μL. Reproducibility of the test was verified by comparing the PCR results with those of a different PCR protocol and qPCR. The method showed no cross-reactivity with genomic DNAs of eight pathogens. The authors concluded that the diagnostic kit Coxiella burnetii-PCR-TEST has high sensitivity and specificity can serve as a valid diagnostic tool for C. burnetii detection in biological samples. The study was published on September 19, 2019, in the journal Vector-Borne and Zoonotic Diseases.

Related Links:
Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.