We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




MALDI-TOF MS Employed for Early Diagnosis of Bloodstream Infections

By LabMedica International staff writers
Posted on 17 Dec 2020
Print article
Image: The MicroScan WalkAway 96 Plus Microbiology System (Photo courtesy of Beckman Coulter).
Image: The MicroScan WalkAway 96 Plus Microbiology System (Photo courtesy of Beckman Coulter).
Bloodstream infections (BSIs) are a major cause of mortality in hospitalized patients. Rapid diagnosis is crucial because any delay in the antimicrobial treatment is associated with an increase in adverse patient outcomes.

The routine identification of microorganisms in clinical microbiology laboratories is carried out by applying different tests, such as phenotypic essays based on microscopic, macroscopic, and biochemical analyses that allow determining their metabolic requirements, either manually or by automated systems.

A team of Medical Microbiologists at the Pontificia Universidad Javeriana (Bogotá, Colombia) analyzed 470 positive blood cultures from 190 patients’ samples using Standard Aerobic/F and Anaerobic/F blood culture media. Isolates were identified using conventional identification methods and by the direct method using the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF MS) system.

All blood cultures were incubated in the BacT/ALERT blood culture system (bioMérieux, Marcy-L’Etoile, France). All isolates were identified using both conventional methods MicroScan WalkAway 96 Plus (Beckman Coulter, Brea, CA, USA), and MALDI-TOF MS.

The protein mass spectra were analyzed using the Flex Control software and the MALDI Biotyper version 3.1 7311 reference spectra (main spectra) (Bruker Daltonics, Bremen, Germany).

The team reported that in 470 blood cultures, the direct method showed good identification results (420/470, 89%); specifically, accurate species and genus identification in 283/470 (60%), and only correct genus identification in 137/470 (29%). The direct protocol had better performance for Gram-negative compared to Gram-positive bacteria (97% versus 76%) and was unable to identify the positive blood cultures for both yeasts and some bacteria, mostly Gram-positive (50/470).

The direct method was unable to identify the positive blood cultures for yeasts and for some bacteria such as Staphylococcus aureus 15/52, coagulase negative staphylococci 11/33, Salmonella spp. 3/3, Streptococcus salivarus 2/2, Actinomyces naeslundii 1/1, and Cutibacterium acnes 1/1. However, all strains of Staphylococcus aureus or coagulase negative staphylococci were identified through the conventional method.

The authors concluded that accurate identification of the pathogen species that cause an infection is paramount. Their study provided a rapid and easy method for the direct identification of pathogens from positive blood cultures. The in-house protocol used gave good and reliable results for Gram-negative bacteria and may be helpful for the identification of some Gram-positive bacteria. This allowed better use of the robust MALDI-TOF technology with results available up to 24 hours earlier, which could positively impact the treatment of patients. The study was published on December 1, 2020 in the International Journal of Infectious Diseases.

Related Links:
Pontificia Universidad Javeriana
bioMérieux
Beckman Coulter
Bruker Daltonics


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.