We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid, Highly Accurate Test Developed to Detect Viruses

By LabMedica International staff writers
Posted on 16 Dec 2021
Print article
Image: Schematic diagram of the Plasmonic Biosensor that detects virus biomarkers from the blood (Photo courtesy of University of Central Florida)
Image: Schematic diagram of the Plasmonic Biosensor that detects virus biomarkers from the blood (Photo courtesy of University of Central Florida)
The rapid spread of viral infections demands early detection strategies to minimize proliferation of the disease. A device has been developed that detects viruses in the body as fast as and more accurately than current, commonly used rapid detection tests.

The optical sensor device uses nanotechnology to accurately identify viruses in seconds from blood samples. The device works by using nano-scale patterns of gold that reflect back the signature of the virus it is set to detect in a sample of blood. Different viruses can be detected by using different DNA sequences that selectively target specific viruses.

Bioengineers from the University of Central Florida (Orlando, FL, USA), who developed the device, demonstrated a plasmonic biosensor to detect Dengue virus, a mosquito transmitted pathogen that causes Dengue fever, which was chosen as a model, via its nonstructural protein NS1 biomarker. The sensor is functionalized with a synthetic single-stranded DNA oligonucleotide and provides high affinity toward NS1 protein present in the virus genome.

The scientist reported that the device can tell with 95% accuracy if someone has a virus, a significant improvement over current rapid tests that experts warn could have low accuracy. Testing for viruses is important for early treatment and to help stop their spread. They demonstrated the detection of NS1 protein at a concentration of 0.1–10 μg/mL in bovine blood using an on-chip microfluidic plasma separator integrated with the plasmonic sensor which covers the clinical threshold of 0.6 μg/mL of high risk of developing Dengue hemorrhagic fever. The device closely matches the accuracy of the gold-standard PCR-based tests, but with nearly instantaneous results instead of results that take several days to receive.

Debashis Chanda, PhD, a Professor of Nanoscience Technology and senior author of the study, said, “The sensitive optical sensor, along with the rapid fabrication approach used in this work, promises the translation of this promising technology to any virus detection including COVID-19 and its mutations with high degree of specificity and accuracy. We have demonstrated a credible technique which combines PCR-like genetic coding and optics on a chip for accurate virus detection directly from blood.”

The authors concluded that the conceptual and practical demonstration shows the translation feasibility of these microfluidic optical biosensors for early detection of a wide range of viral infections, providing a rapid clinical diagnosis of infectious diseases directly from minimally processed biological samples at point of care locations. The study was originally published on September 8, 2021 in the journal Nano Letters.

Related Links:
University of Central Florida

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.