We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Immunoassay, Mini Mass Spec Combined for Malaria Detection

By LabMedica International staff writers
Posted on 01 Nov 2022
Print article
Image: The Continuity transportable mass spectrometer brings high-sensitivity and large mass range to chemical analysis in the field (Photo courtesy of BaySpec)
Image: The Continuity transportable mass spectrometer brings high-sensitivity and large mass range to chemical analysis in the field (Photo courtesy of BaySpec)

Currently, several different technologies are available for diagnosing malaria, but each has drawbacks. PCR, for instance, is highly sensitive and specific, but it requires upfront sample processing and specialized equipment. While point-of-care and home PCR testing has come to market in recent years, these assays are quite expensive.

There are also rapid antigen tests for malaria, but these tests can be expensive. Microscopy is the traditional gold standard for diagnosing malaria, but it is labor intensive and subjective as well as technically challenging. A protein detection workflow that combines paper-based immunoassays with miniaturized mass spectrometry to enable diagnostic testing in resource-constrained areas has been developed.

Biochemists at Ohio State University (Columbus, OH, USA) used ionic probe technology for malaria detection and suggested it could be applied for large-scale surveillance and screening for the disease. The probes provide a more stable alternative to reagents used in conventional immunoassays, making them potentially useful for work in areas where cold storage is not widely available. The probes remain stable for several weeks under ambient conditions and are designed to release, upon treatment with ammonium hydroxide, mass tags that can be detected using paper spray ionization mass spectrometry.

The investigators synthesized pH-sensitive ionic probes and coupled them with monoclonal antibodies specific to the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) malaria antigen. They then used the antibody-ionic probe conjugates in a paper-based immunoassay to capture PfHRP2 antigen from untreated whole blood. After the immunoassay, the bound ionic probes were cleaved, and the released mass tags were analyzed through an on-chip paper spray mass spectrometry strategy.

The test was able to detect the malaria antigen PfHRP2 in untreated human serum at levels down to 0.216 nmol/L, below the 0.227 nmol/L sensitivity threshold recommended by the World Health Organization for evaluating symptomatic patients. In terms of cost, the test is currently more expensive than the low end of the rapid antigen market, but it is expected costs will come down once the test is fully developed and being manufactured at scale. The team used a Continuity miniature mass spectrometer (BaySpec, Jose, CA, USA).

Abraham Badu-Tawiah, PhD, a Professor of Chemistry and senior author of the study, said, “Bigger mass spectrometers need to run continuously to maintain performance. Not so with portable instruments. The portable mass spectrometer is robust and can be turned it off when not in use, and turn it on when needed. It takes only 10 minutes to get it ready for analysis.”

The authors concluded that the stability and sensitivity of the developed paper-based immunoassay platform will allow miniature mass spectrometers to be used for point-of-care malaria detection as well as in large-scale surveillance screening to aid eradication programs. The study was published on October 4 2022 in the journal Analytical Chemistry.

Related Links:
Ohio State University
BaySpec 

Gold Member
Troponin T QC
Troponin T Quality Control
Automated Blood Typing System
IH-500 NEXT
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.