We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Test Uses Bacteria-Infecting Viruses to Accurately Identify UTI-Causing Pathogens

By LabMedica International staff writers
Posted on 31 Jul 2023
Print article
New rapid test uses bacteriophages to quickly and accur­ately identify UTI-causing pathogens (Photo courtesy of ETH Zurich)
New rapid test uses bacteriophages to quickly and accur­ately identify UTI-causing pathogens (Photo courtesy of ETH Zurich)

Cystitis affects approximately 50% of women at some point in their lives, with many experiencing recurring urinary tract infections. These bladder infections not only cause pain and potential complications but also present a significant challenge to healthcare providers. The rampant spread of antibiotic resistance in urinary tract infections often forces physicians to prescribe antibiotics indiscriminately without awareness of their effectiveness against the infection-causing pathogen. This is largely due to the lengthy period taken by conventional diagnostic methods to identify specific pathogens. Now, scientists have developed a rapid test that uses bacteriophages, viruses that naturally prey on bacteria, and have also altered them genetically to further increase their effectiveness in destroying pathogenic bacteria.

Bacteriophages, or simply phages, are highly specialized viruses. Each phage species infects only a particular bacterial type or strain. Scientists at ETH Zurich (Zurich, Switzerland) have harnessed this unique feature to develop a rapid test and a new therapeutic approach for urinary tract infections. Their initial step was identifying the most potent phages against the three primary bacteria types associated with urinary tract infections: Escherichia coli, Klebsiella, and Enterococci. The researchers then altered these naturally occurring phages in order to trigger the bacteria they recognize and infect to emit an easily detectable light signal. Using this technique, the researchers could reliably identify the disease-causing bacteria directly from a urine sample within four hours. This novel method could enable immediate prescription of the appropriate antibiotic after diagnosis, minimizing resistance development and promoting better antibiotic management.

The new method offers another advantage: it enables physicians to determine which patients might particularly benefit from personalized phage therapy, as the light signal strength in the assay indicates the phages' effectiveness in attacking the bacteria – the brighter the sample, the better the response to therapy. In a proof of concept study, the researchers enhanced the phages' efficacy by genetically modifying them. The altered phages not only generate new phages inside the host bacterium but also bacteriocins. These bacteria-killing proteins are especially potent against bacterial strains that have modified their surface parts to evade phage recognition, offering a two-pronged attack for enhanced treatment efficacy.

Nonetheless, the widespread application of such therapies in Western countries still has considerable obstacles to overcome. Aside from comprehensive clinical trials, regulatory amendments acknowledging phages as evolving biological entities that co-evolve with their bacterial hosts would be beneficial. The researchers' next step will involve testing the newly-developed phage therapy's efficacy in a clinical trial involving selected patients.

Related Links:
ETH Zurich

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Adenovirus Test
S3334E ADV Adenovirus Kit
New
Chagas Disease Test
Simple/Stick Chagas/WB

Print article

Channels

Molecular Diagnostics

view channel
Image: The BIOTIA-ID urine NGS assay is a urine infectious disease test powered by genomics and AI (Photo courtesy of Shutterstock)

Genomics and AI-Powered Urine Infectious Disease Test Addresses Critical Need for Complicated UTIs

Urinary tract infections (UTIs) are the most prevalent outpatient infection, affecting over 7 million patients annually, with women being disproportionately impacted. UTIs can severely affect the quality... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Pathology

view channel
Image: Ataraxis Breast has shown 30% higher accuracy in predicting cancer recurrence than the standard of care molecular diagnostic assay (Photo courtesy of 123RF)

World’s First AI-Native Cancer Diagnostic to Transform Precision Medicine

Molecular diagnostic tests have long been regarded as the standard for selecting personalized treatments, especially in oncology. However, these tests require physical tissue samples and are often limited... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.