We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Detection Technique to Improve Diagnostic Procedure for Bacterial Diseases

By LabMedica International staff writers
Posted on 06 Sep 2023
Print article
Image: Researchers have developed a novel chemosensor-based method for the rapid detection of bacterial toxin (Photo courtesy of Sophia University)
Image: Researchers have developed a novel chemosensor-based method for the rapid detection of bacterial toxin (Photo courtesy of Sophia University)

Lipopolysaccharide (LPS) is a dangerous endotoxin produced by certain bacteria and can trigger harmful immune responses in humans. However, current methods for detecting LPS are slow and complicated. To address this issue, a research team has proposed a system based on a unique fluorescent chemosensor that can detect LPS within minutes, making it ideal for on-site testing in hospitals and pharmaceutical manufacturing facilities.

The COVID-19 pandemic highlighted the need for faster pathogen and toxin screening methods. One such toxin is LPS, which is often referred to as "endotoxins." This molecule is found in the outer membrane of certain bacteria and can be highly harmful, causing fever, inflammation, and even organ failure in severe cases. Surprisingly, despite its prevalence, there are very few effective methods to detect LPS. The current gold standard, the limulus amebocyte lysate (LAL) test, is a manual and time-consuming process that takes several hours and is costly. Other methods for LPS detection are also slow or cumbersome, leading to delays in decision-making in healthcare and pharmaceutical settings. Researchers at Sophia University (Tokyo, Japan) have pioneered a novel approach to rapidly detect LPS in liquid samples. Their new platform has the potential to revolutionize LPS screening.

At the core of this LPS analysis system is a ratiometric fluorescent chemosensor called Zn-dpa-C2OPy. This compound was designed to selectively bind to LPS and exhibits unique fluorescent properties. When not bound to LPS, it forms small spherical vesicles that emit specific-wavelength light upon exposure to UV rays. However, in the presence of LPS, the chemosensor forms complex aggregates with the toxin in the solution. These chemosensor-LPS aggregates emit light at a different wavelength when exposed to UV rays, with their presence further confirmed using spectrometric measurements. To enable high-throughput LPS detection, the researchers combined the chemosensor with a flow injection analysis (FIA) system and a custom dual-wavelength fluorophotometer. This system allows for the easy mixing of a liquid sample with the chemosensor, and the mixture is then analyzed by the fluorophotometer to measure fluorescence changes in response to LPS. By comparing fluorescence intensities, the LPS concentration in the sample can be estimated. One of the major advantages of this system is its speed, as it only takes one minute from sample collection to obtaining results, with the capacity to process 36 samples per hour, making it exceptionally rapid and efficient.

Additionally, the chemosensor-based analysis system is highly sensitive and stable for quantifying LPS, with a detection limit of 11 pM (picomolar), surpassing other reported methods for LPS detection. The system is also simple and animal-friendly, unlike conventional LPS detection methods that use animal resources and may harm them. This makes it an excellent candidate for practical and efficient point-of-care testing for LPS and bacterial contamination in water, clinical, or pharmaceutical samples. With further advancements in this field, the threat of endotoxins can be minimized, enhancing safety in hospitals and improving diagnostic procedures for bacterial diseases.

“Based on this research, an online-endotoxin monitor will be developed and made available for use in real-life situations,” said Takeshi Hashimoto from Sophia University. “Such a monitor could be installed at pharmaceutical production sites, hospital bedsides, and intensive care units to continuously monitor endotoxin concentration in pharmaceutical products, such as water for injection, or the blood of infected patients.”

Related Links:
Sophia University

Gold Member
Hematology Analyzer
Swelab Lumi
Gold Member
Troponin T QC
Troponin T Quality Control
New
Chikungunya Rapid Test
Chikungunya IgG/IgM Rapid Test Kit
New
Adenovirus Test
S3334E ADV Adenovirus Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The BIOTIA-ID urine NGS assay is a urine infectious disease test powered by genomics and AI (Photo courtesy of Shutterstock)

Genomics and AI-Powered Urine Infectious Disease Test Addresses Critical Need for Complicated UTIs

Urinary tract infections (UTIs) are the most prevalent outpatient infection, affecting over 7 million patients annually, with women being disproportionately impacted. UTIs can severely affect the quality... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Pathology

view channel
Image: Ataraxis Breast has shown 30% higher accuracy in predicting cancer recurrence than the standard of care molecular diagnostic assay (Photo courtesy of 123RF)

World’s First AI-Native Cancer Diagnostic to Transform Precision Medicine

Molecular diagnostic tests have long been regarded as the standard for selecting personalized treatments, especially in oncology. However, these tests require physical tissue samples and are often limited... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.