We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




CRISPR Test Diagnoses Mpox Faster Than Lab-Based PCR Method

By LabMedica International staff writers
Posted on 14 Feb 2024
Print article
Image: CRISPR is combined with nanopore sensing technology to detect whether or not mpox is present in a sample (Photo courtesy of 123RF)
Image: CRISPR is combined with nanopore sensing technology to detect whether or not mpox is present in a sample (Photo courtesy of 123RF)

Mpox, formerly known as monkeypox, is a rare viral disease transmitted through physical contact and typically presents mild symptoms like fever, rash, and swollen lymph nodes, though severe cases can require medical intervention. Due to its contagious nature, prompt testing is crucial for isolation and treatment purposes. Current mpox testing requires laboratory equipment and may take hours to yield results. Now, new research suggests a way for faster mpox testing that could be done in any clinic.

Researchers at Pennsylvania State University (University Park, PA, USA) have utilized CRISPR, the groundbreaking gene-editing technology, to develop a faster mpox test. For their study, the team designed a genetic sequence with an attached reporter specifically targeting the mpox virus. The test employs programmable CRISPR RNA that binds to the target and a protein called Cas12a, which together cleaves the reporter to produce fragments of varying sizes. Using nanopore sensing technology, these reporter fragments are analyzed to rapidly and accurately determine the presence of mpox in a sample.

The specificity of the test was validated by its inability to detect cowpox virus, a relative of mpox, thereby confirming its exclusive sensitivity to mpox. This testing method significantly reduces the detection time, taking only 32 to 55 minutes depending on the viral load, compared to the longer duration required for PCR lab testing. The research team is exploring the application of this nanopore technology for the development of tests for other pathogens, aiming to enable multi-target testing from a single sample using a portable device. Although this technology is not yet commercially available, the researchers hope to create a device that could facilitate widespread pathogen testing.

Related Links:
Pennsylvania State University

New
Gold Member
Chagas Disease Test
CHAGAS Cassette
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
New
Microplates
Eppendorf Microplates
New
Human Chorionic Gonadotropin Test
Humasis hCG Combo

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.