We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Determination of Protein Phosphorylation Helps Diagnose Blood Cancers

By LabMedica International staff writers
Posted on 21 Apr 2009
Print article
Determination of protein phosphorylation in blood or minute tissue specimens might replace biopsies for cancer diagnosis and response to treatment.

Scientists used a system capable of analyzing whether individual cancer-associated proteins were present in a drop of blood or minute tissue specimens and whether modifications of the proteins varied in response to cancer treatments. The study focused on blood cancers, but the technique might also provide a faster, less invasive way to track solid tumors.

The Cell Biosciences (Palo Alto, CA, USA) protein analysis system used in the study is an ultrasensitive nanofluidic immunoassay system designed to analyze extremely small biological samples. Traditional protein analysis techniques can require as many as 100,000 cells, which complicates protein analysis in limited samples. The Cell Biosciences system can measure cell-signaling proteins reproducibly in as few as 25 cells.

Stanford Medical School (Palo Alto, CA, USA) investigators collaborated with scientists from Cell Biosciences to separate cancer-associated proteins in narrow capillary tubes based on their charge, which varies according to modifications on the proteins' surface. Two versions of the same protein, one phosphorylated and one not, were easily distinguished because they traveled different distances in the tube. Antibodies were than used to identify the relative amounts and positions of the various proteins.

Variations in the way a protein is modified, or phosphorylated, can affect how it functions in tumor progression. Cancer cells often evade common therapies by altering their levels of protein expression and degrees of phosphorylation. Analyzing repeated small samples from a tumor undergoing treatment might allow doctors to head off rogue cells before they have a chance to proliferate into a more resistant tumor or to identify patients likely to fail standard approaches to treatment.

Alice Fan, M.D., a clinical instructor in the division of oncology at the Stanford medical school performed the study in the laboratory of Dean Felsher, MD, PhD, associate professor of medicine and of pathology and the leader of the Stanford molecular therapeutics program. "This technology allows us to analyze cancer-associated proteins on a very small scale," said Professor Felsher, a member of Stanford's Cancer Center, who studies how cancer genes called oncogenes initiate and influence tumor progression in many types of cancers. "Not only can we detect picogram levels--one-trillionth of a gram--of protein, but we can also see very subtle changes in the ways the protein is modified."

The study was reported in the advance online issue of the journal Nature Medicine on April 12, 2009.

Related Links:

Cell Biosciences
Stanford Medical School


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Unit-Dose Packaging solution
HLX
New
Clinical Sample Concentrator
QIAamp DSP Virus Kit
New
Pregnancy Test
CLINITEST hCG

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate Arc System has been granted US FDA 510(k) clearance (Photo courtesy of Accelerate Diagnostics)

Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR

Delayed administration of antibiotics to patients with bloodstream infections significantly increases the risk of morbidity and mortality. For optimal therapeutic outcomes, it is crucial to rapidly identify... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.