We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Lab-on-Chip System Developed for Cancer Diagnosis

By LabMedica International staff writers
Posted on 14 Sep 2010
Print article
A promising methodology to diagnose cancer dissemination or to follow up cancer patients during therapy has been developed.

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters in size. LOCs deal with the handling of extremely small fluid volumes down to less than pL (picoliters).

The detection of circulating and disseminated tumor cells by a LOC system, integrating the many processing steps, would enable a faster, easy-to-use, cost-effective detection of tumor cells in blood. The detection analyses of these tumor cells are performed in medical laboratories requiring labor intensive, expensive, and time-consuming sample processing and cell isolation steps. A full tumor-cell detection analysis can take more than a day. The development of a fully automated, LOC platform to isolate, count and genotype circulating and disseminated tumor cells is envisaged within the framework of the Interuniversity Microelectronics Center (IMEC; Leuven, Belgium).

For genotyping, the messenger ribonucleic acid (mRNA) genetic material, will be extracted from the cells and multiple cancer related markers will be amplified based on multiplex ligation dependent probe amplification (MLPA) followed by their detection using an array of electrochemical sensors. MLPA facilitates the amplification and detection of multiple targets with a single primer pair. In a standard multiplex PCR reaction, each fragment needs a unique amplifying primer pair. These primers being present in a large quantity result in various problems such as dimerization and false priming. With MLPA amplification of these probes, many sequences (up to 40) can be amplified and quantified using just a single primer pair. MLPA reaction is fast, cheap, and very simple to perform. The resulting lab-on-chip tumor detection system will be well ahead of the current state-of-the-art, revolutionizing cancer diagnostics and individualized theranostics.

Related Links:

Interuniversity Microelectronics Center

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Clostridium Difficile Assay
Revogene C. Difficile
New
Dengue Test
Lab Rapid Dengue NS1

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.