We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Diagnostic Test Clinically Validated for Breast Cancer Mutations

By LabMedica International staff writers
Posted on 22 Oct 2013
Print article
Image: RTD 1000 picodroplet-based Polymerase chain reaction-setup system (Photo courtesy of RainDance Technologies).
Image: RTD 1000 picodroplet-based Polymerase chain reaction-setup system (Photo courtesy of RainDance Technologies).
An innovative technique using second-generation sequencing technology is as sensitive as the standard methodology but has the potential to improve the efficiency and productivity of genetic testing laboratories.

The recognition of a causal link between mutations in breast cancer 1, early onset (BRCA1) and breast cancer type 2 susceptibility protein (BRCA2) genes and increased risk of developing breast and ovarian cancer has intensified the demand for genetic testing.

Scientists at British Columbia Cancer Agency (Vancouver, BC, Canada) employed the second-generation sequencing assay that uses automated small amplicon polymerase chain reaction (PCR) followed by sample pooling and sequencing with a second-generation instrument. The target region selected was thought to encompass the majority of pathogenic sequence changes in BRCA1 and BRCA2.

The investigators tested the assay using a set of 91 patient genomic DNA samples, 48 selected retrospectively and 43 prospectively. Constitutional DNA was purified from 10 mL of whole peripheral blood using the PureGene protocol and reagents (Inter Medico; Markham, ON, Canada) and quantification was performed via spectrophotometry (NanoDrop; Thermo Fisher Scientific; Wilmington, DE, USA).

The method generated high-quality sequence coverage across all targeted regions with median coverage greater than 4,000-fold for each pooled sample. After some technical adjustments, such as setting the maximum depth parameter to an arbitrarily high value of 500,000 using Sequence Alignment/Map (SAMtools) software and selecting 100,000 as the on-target alignments threshold, the method proved sensitive and specific for detecting variants in genetic sequences.

Comparing the results to those obtained by the standard dideoxy sequencing methodology, the team found 100% concordance between the two methods, with no false-positive or false-negative predictions. The results demonstrate that the method is suitable for sensitive, automatable, high-throughput sequence variant detection in the clinical laboratory.

Aly Karsan, MD, the senior author of the study said, “In our laboratory, approximately 25% of high risk patients who undergo BRCA1 or BRCA2 testing will generate a result with a real or ambiguous relationship to hereditary cancer risk, and so testing for these mutations is an important tool to identify individuals who would benefit from preventative surgery or increased breast cancer surveillance.” The study was published on October 7, 2013, in the Journal of Molecular Diagnostics.

Related Links:

British Columbia Cancer Agency
Inter Medico
NanoDrop

New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Unit-Dose Packaging solution
HLX
New
Respiratory Syncytial Virus Test
QuickVue RSV Test
New
Automated Nucleic Acid Extraction Instrument
EX9600

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.