We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Microsatellite Genotyping Reveals Signature in Breast Cancer Exomes

By LabMedica International staff writers
Posted on 24 Jul 2014
Print article
Image: Histopathology of high grade invasive ductal carcinoma of the breast (Photo courtesy of Johns Hopkins University).
Image: Histopathology of high grade invasive ductal carcinoma of the breast (Photo courtesy of Johns Hopkins University).
Several novel markers have been pinpointed in breast cancer (BC) patients that may not only reveal risks for the disease, but may yield therapeutic benefits as well.

Microsatellites are repetitive DNA regions that occur throughout the genome, and variations within microsatellites can affect cellular function through mechanisms including promoting altering protein sequence and affecting gene regulation.

Scientists at Virginia Tech (Blacksburg, VA, USA) computed the genotypes of microsatellite loci found within 249 ethnically matched healthy female germlines, 656 BC germline exomes, 689 BC tumors (656 matched to the germline samples), and 212 healthy male germlines from exome sequences that were available. The genotypes at these loci created a profile used as a risk assessment tool for classifying independent sets of the healthy or BC exomes.

The team applied their microsatellite genotyping pipeline to nearly 50,000 microsatellite loci from BC and disease-free females and identified 55 loci at which the frequency of nonmodal genotypes was statistically significantly different between the two populations, of which 30 showed a risk ratio below 0.6, while 25 had a risk ratio greater than 1.3. The overwhelming majority of exomes classified as cancer-like did not carry any known BC-associated mutation. An assay consisting of these 55 loci could be clinically informative with a sensitivity of 88.4 %, which exceeds current test performance, while the specificity is about two fold which would be expected, given that 12 % of the healthy female population will be future BC patients.

Natalie Fonville, PhD, a geneticist and coauthor of the study said, “There is still a lot we can learn from looking at the human genome and how it can be affected in ways that may be associated with disease. This study is the first of many in which we are engaged that identify subtle genomic changes which together may add up to cancer risk.”

Michael B. Waitzkin, JD, the chief executive officer of Genomeon LLC (Floyd, VA, USA) to whom the technology has been licensed, said, “The use of microsatellite variations as diagnostics has the potential to transform the way cancer and other heritable diseases are diagnosed and treated. This technology is a very exciting example of the possibilities for translating academic discoveries into clinical use.” The study was published in the June 2014 issue of the journal Breast Cancer Research and Treatment.

Related Links:

Virginia Tech
Genomeon LLC



New
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
New
Bordetella Pertussis ELISA
NovaLisa Bordetella Pertussis IgA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.