We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Low Cost Method Examines Single Leukemic Cells

By LabMedica International staff writers
Posted on 28 Oct 2016
Print article
Image: The Metafer Vslide scanning system connected to a Zeiss microscope (Photo courtesy of MetaSystems).
Image: The Metafer Vslide scanning system connected to a Zeiss microscope (Photo courtesy of MetaSystems).
Leukemia is a disease in which each cell can exhibit different genetic traits, and a cheap way has been developed to examine the individual cells and this breakthrough could transform leukemia treatment.

Cells are packed with genetic information that can be used to improve treatment of diseases such as cancer, but the ribonucleic acid (RNA) sequencing methods typically used today have one limitation in that they do not identify in which cells the genetic activity is taking place.

Scientists at the KTH Royal Institute of Technology (Stockholm, Sweden) and their colleagues developed a new method they used to examine individual tumor cells in patients with chronic lymphocytic leukemia (CLL), an important advance considering the team found the leukemia tumors to be comprised of cells with entirely different gene expressions. They used cryopreserved peripheral blood mononuclear samples derived from three CLL patients. All cases were diagnosed and classified according to recently revised iwCLL criteria44 with a typical CLL immunophenotype.

Individual cells were sorted on a specially made glass surface and using analysis of RNA molecules with next-generation sequencing, from which one can tell which genes are active. The spatial information on the glass surface tells which cell a specific RNA molecule is to be found in. The FACS sorter utilized for analyses and single-cell sorting was a BD Influx. Images of sorted and stained cells on barcoded microarrays were recorded using a Metafer Vslide scanning system installed on an Axio Imager Z2 LSM700 microscope.

The method enabled massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enabled both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost of USD 0.13/cell, which is two orders of magnitude less than commercially available systems. The novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes.

Joakim Lundeberg, PhD, a professor of Gene Technology and senior author of the study, said, “We found that CLL cells do not consist of a single cell type, but of a number of sub-clones that exhibit entirely different gene expression. With this new, highly cost-effective technology, we can now get a whole new view of this complexity within the blood cancer sample. Molecular resolution of single cells is likely to become a more widely-used therapy option.” The study was published on October 14, 2016, in the journal Nature Communications.

Related Links:
KTH Royal Institute of Technology

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.