We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarker Signatures Predict Aging Health Quality

By LabMedica International staff writers
Posted on 17 Jan 2017
Print article
A panel of 19 biomarkers in the blood was utilized to create molecular signatures that are able to predict how well an individual is aging and how severe the likelihood that he or she will develop an aging-related disease.

To establish these signatures, investigators at Boston University measured 19 blood biomarkers that included constituents of standard hematological measures, lipid biomarkers, and markers of inflammation and frailty in 4704 participants of the Long Life Family Study (LLFS). The biomarkers were selected based upon their noted quantitative change with age and specificity for inflammatory, hematological, metabolic, hormonal, or kidney functions.

The LLFS is a family-based study that enrolled 4935 participants including subjects and siblings (30%), their offspring (50%), and spouses (20%), with ages between 30 and 110 years. Approximately 40% of enrolled participants were born before 1935 and had a median age at enrollment of 90 years and 45% participants were male. Almost 55% of participants from the subject generation (birth year prior to 1935) have died since enrollment, with a median age at death of 96 years. Mortality in the generation born after 1935 is lower (3%) and among these few that have died, median age at death is currently 69 years.

The investigators used an agglomerative algorithm to analyze distribution of the 19 biomarkers and then grouped LLFS participants into clusters that yielded 26 different biomarker signatures.

To test whether these signatures were associated with differences in biological aging, the investigators correlated them with longitudinal changes in physiological functions and incident risk of cancer, cardiovascular disease, type II diabetes, and mortality using longitudinal data collected in the LLFS. One signature was found to be associated with significantly lower mortality, morbidity, and better physical function relative to the most common biomarker signature in LLFS, while nine other signatures were associated with less successful aging, characterized by higher risks for frailty, morbidity, and mortality.

"Many prediction and risk scores already exist for predicting specific diseases like heart disease," said first author Dr. Paola Sebastiani, professor of biostatistics at Boston University. "Here, though, we are taking another step by showing that particular patterns of groups of biomarkers can indicate how well a person is aging and his or her risk for specific age-related syndromes and diseases. These signatures depict differences in how people age, and they show promise in predicting healthy aging, changes in cognitive and physical function, survival, and age-related diseases like heart disease, stroke, type II diabetes, and cancer."

The study was published in the January 6, 2017, online edition of the journal Aging Cell.

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
cTnI/CK-MB/Myo Test
Finecare cTnI/CK-MB/Myo Rapid Quantitative Test
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.