We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Sensitive NA Detection Aids Pathogen Diagnoses

By LabMedica International staff writers
Posted on 26 Apr 2017
Print article
Image: The fluorescent signal demonstrated by the Specific High Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) system using CRISPR-Cas (Photo courtesy of the Broad Institute).
Image: The fluorescent signal demonstrated by the Specific High Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) system using CRISPR-Cas (Photo courtesy of the Broad Institute).
Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring, and can be used to diagnose infections, such as Zika and dengue, with a high level of sensitivity.

The advancement could help facilitate rapid detection and diagnosis of many other pathogens, too. While some methods exist for detecting genetic sequences, they have trade-offs among sensitivity, specificity, simplicity, cost, and speed.

A large team of scientists working with those at the Broad Institute searched for a more effective method of pathogen diagnostics turned to a clustered regularly interspaced short palindromic repeats- (CRISPR)-associated protein (CRISPR-Cas) system that targets ribonucleic acid (RNA). Binding the target RNA activates this particular Cas enzyme to promiscuously cleave nearby RNA. They exploited this by including a reporter RNA that releases a fluorescent signal when it is cleaved, and used a technique, called recombinase polymerase amplification, to further boost sensitivity.

The team combined the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. They used this Cas13a-based molecular detection platform, termed SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify cell-free tumor DNA mutations.

The SHERLOCK platform could detect rather low titers of Zika virus in serum, urine, and saliva, and can also be used to measure viral load. The investigators found that the technique was effective at identifying various bacterial strains, even differentiating between strains of bacterial pneumonia with different resistance mutations. Lastly, the authors show that SHERLOCK can be used to detect different cancer mutations.

A SHERLOCK test can be redesigned and synthesized in a matter of days for as low as USD 0.61/test, the authors say, noting that the high sensitivity of the system opens new avenues for rapid, robust and sensitive detection of biological molecules. The SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage, and readily reconstituted on paper for field applications. The study was published on April 13, 2017, in the journal Science.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.