We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Direct Spectroscopy Used for Diagnosis of Neurodegenerative Disorders

By LabMedica International staff writers
Posted on 19 Sep 2017
Print article
Image: An ATR attachment for infrared spectroscopy. The sample is in the steel containers either side of the pink crystal (Photo courtesy of Wikimedia Commons).
Image: An ATR attachment for infrared spectroscopy. The sample is in the steel containers either side of the pink crystal (Photo courtesy of Wikimedia Commons).
Advanced spectroscopy methods were used to establish a direct diagnostic test for Alzheimer's disease and other types of neurodegenerative disorders.

Neurodegenerative diseases lack early and accurate diagnosis, and tests currently used for their detection are either invasive or expensive and time-consuming. A recent study used blood plasma to diagnose and differentiate various neurodegenerative diseases; the achieved sensitivities and specificities were equal to, or even higher than, the ones obtained by clinical/molecular methods.

In conducting this study, investigators at Lancaster University (United Kingdom) employed attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) combined with chemometric techniques to analyze blood plasma samples from a study population.

Attenuated total reflection (ATR) is a sampling technique used in conjunction with infrared spectroscopy, which enables samples to be examined directly in the solid or liquid state without further preparation. ATR uses a property of total internal reflection resulting in an evanescent wave. A beam of infrared light is passed through the ATR crystal in such a way that it reflects at least once off the internal surface in contact with the sample. This reflection forms the evanescent wave, which extends into the sample. The number of reflections may be varied by varying the angle of incidence. The beam is then collected by a detector as it exits the crystal. Most modern infrared spectrometers can be converted to characterize samples via ATR by mounting the ATR accessory in the spectrometer's sample compartment. Infrared (IR) spectroscopy by ATR is applicable to the same chemical or biological systems as the transmission method. One advantage of ATR-IR over transmission-IR, is the limited path length into the sample. This avoids the problem of strong attenuation of the IR signal in highly absorbing media, such as aqueous solutions.

For the recent study, blood samples were collected by conventional venipuncture, permitting repeated measurements from the same individuals to monitor their progression throughout the years or evaluate any tested drugs. The study population comprised 549 individuals: 347 with various neurodegenerative diseases and 202 age-matched healthy individuals. Alzheimer’s disease (AD; n = 164) was identified with 70% sensitivity and specificity, which after the incorporation of apolipoprotein epsilon-4 genotype (APOE epsilon-4) information, increased to 86% when individuals carried one or two alleles of epsilon-4, and to 72% sensitivity and 77% specificity when individuals did not carry epsilon-4 alleles.

Early AD cases (n = 14) were identified with 80% sensitivity and 74% specificity. Segregation of AD from dementia with Lewy bodies (DLB; n = 34) was achieved with 90% sensitivity and specificity. Other neurodegenerative diseases, such as frontotemporal dementia (FTD; n = 30), Parkinson’s disease (PD; n = 32), and progressive supranuclear palsy (PSP; n = 31), were included in the study population for diagnostic purposes. Thus, the method allowed for both rapid and robust diagnosis of neurodegeneration and segregation between different dementias.

Senior author Dr. Francis Martin, professor of biosciences at Lancaster University, said, "We have an aging population, meaning that the incidence and prevalence of Alzheimer's is increasing, as is the need for accurate diagnosis. The ability to identify different neurodegenerative diseases through the analysis of blood offers a faster and accurate way of establishing the most effective treatment plan as well as disease monitoring. For those suffering with Alzheimer's disease, the damage is already well advanced once conventionally diagnosed, but this new method offers a potentially effective early screening tool when patients are only demonstrating signs of mild cognitive impairment. This is a potentially significant breakthrough for the prevention of different debilitating and chronic neurological diseases."

The ATR-FTIR study was published in the September 5, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
Lancaster University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.