We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mutation Found in Families with Contradictory Blood Sugars

By LabMedica International staff writers
Posted on 01 Feb 2018
Print article
Image: Histopathology: (D) H&E staining showing the trabecular pattern of MAFA mutation-positive insulinomas. (E) Immunostaining shows diffuse MAFA expression in the tumor, at lower levels compared with the neighboring normal islets strongly expressing MAFA (Inset) (Photo courtesy of the Queen Mary University of London).
Image: Histopathology: (D) H&E staining showing the trabecular pattern of MAFA mutation-positive insulinomas. (E) Immunostaining shows diffuse MAFA expression in the tumor, at lower levels compared with the neighboring normal islets strongly expressing MAFA (Inset) (Photo courtesy of the Queen Mary University of London).
Insulinomatosis is a condition characterized by the occurrence of multicentric insulinomas, pancreatic neuroendocrine tumors with β-cell–like features causing hyperinsulinemic hypoglycemia.

Insulinomatosis usually occurs sporadically, although it had also been described to occur in a familial setting in one single kindred where hyperinsulinemic hypoglycemia was paradoxically associated with a strong family history of diabetes mellitus. Due to the multicentric nature of the disease, patients with insulinomatosis have a significantly higher chance of persistent or recurrent disease post-surgery.

A collaborating group of international scientists working with those at the Queen Mary University of London (London, UK) recruited two families with autosomal dominant insulinomatosis and diabetes mellitus (36 subjects, 19 females), and nine patients with sporadic insulinomatosis (eight females). The two families in which some people have contradictory conditions due to high blood sugar and low blood sugar levels share a missense mutation. Both families contain members with diabetes and others with insulinomatosis, multiple pancreatic tumors that produce insulin and lower blood sugar levels.

The team performed immunohistochemistry on archival pancreatic tissue for neuroendocrine markers, Ki-67, and pancreatic hormones (insulin, gastrin, glucagon, and pancreatic polypeptide). Genomic DNA was extracted from peripheral blood leukocytes, saliva, or formalin-fixed archival tissue using commercially available kits. Other techniques employed by the scientists were protein mobility analysis, luciferase assays, and cycloheximide chase experiments. The quantitative polymerase chain reaction (qPCR) reactions were performed with MAFA-Myc, MAFA (endogenous), and GAPDH gene primers on a LightCycler 480 II.

The team sequenced the exomes of four affected people from the first family to find they all shared a missense mutation in the MAFA gene. When they tested all 25 members of that family for the mutation, they found an additional 14 members who were heterozygous for it and two who were homozygous. Seven of the heterozygous individuals had insulinomas, 10 had diabetes, and one was unaffected. The homozygous individuals had diabetes as well as congenital cataracts or glaucoma. Targeted sequencing of a second family with the same disease pattern likewise uncovered this missense MAFA mutation. Five individuals from this family with the mutation had insulinomatosis, one had diabetes, and two were not thought to be affected. In addition, three deceased family members, two with diabetes and one with insulinomatosis, were obligate carriers.

Donato Iacovazzo, MD, an endocrinologist and first author of the study, said, “We believe this gene defect is critical in the development of the disease and we are now performing further studies to determine how this defect can, on the one hand, impair the production of insulin to cause diabetes and on the other, cause insulinomas.” The study was published on January 16, 2018, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Queen Mary University of London


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.