We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




RT-PCR Assay Developed to Detect Bloodstream Infections

By LabMedica International staff writers
Posted on 11 Jun 2018
Print article
Image: The LightCycler 96 real-time PCR system (Photo courtesy of Roche Diagnostics).
Image: The LightCycler 96 real-time PCR system (Photo courtesy of Roche Diagnostics).
Rapid detection and identification of a causative pathogen is essential in the treatment of critically ill patients with blood stream infection (BSI), since timely initiation of adequate antibiotic treatment is associated with decreased morbidity, mortality, and possibly reduced healthcare costs.

Conventional culture of inoculated blood samples, termed blood culture (BC), is currently considered the “gold standard” for diagnosing BSI. However, its diagnostic accuracy may be hampered by concomitant antibiotic treatment, low levels of circulating bacteria, and poor sensitivity for slow growing, intracellular, and fastidious microorganisms.

Scientists at the University of Utrecht Medical Center (Utrecht, the Netherlands) and their colleagues collected 5 mL of blood from critically ill patients across multiple years for both blood culture and polymerase chain reaction (PCR) testing. They used 347 blood-culture positive samples, representing up to 50 instances for each pathogen covered by the assay, as well as 200 blood-culture negative samples in order to compare PCR results. After sample collection, the team added a buffer solution and performed centrifugation on the samples, isolating 7 mL to 10 mL of pathogen DNA per sample for PCR testing.

The team designed three novel multiplex assays in order to detect specific pathogens at the species level, as well as an additional broad PCR assay, called molecular Gram stain, to discriminate clinically relevant Gram-negative specimens from Gram-positive specimens. Bacterial pathogens included Escherichia coli, Enterococcus faecium, E. faecalis, Acinetobacter baumannii, and Staphylococcus aureus. In addition, the researchers included probes for Candida species, Aspergillus, and the resistance markers mecA and CTX- M1,9.

The blood stream infection (BSI-PCR) assays were run on a LightCycler system. Bacterial species-specific PCR sensitivities ranged from 65% to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0% to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2,200 species-specific PCRs in 200 culture-negative samples, and ranged from 0% to 6% for generic PCRs.

The authors concluded that that there was no overall link between BSI-PCR sensitivity and time to positivity of blood culture. Overall, they believe that sensitivity of the BSI-PCR is promising for individual bacterial pathogens, but still inadequate for yeasts and generic PCRs. The study was originally published online on April 26, 2018, in the European Journal of Clinical Microbiology and Infectious Diseases.

Related Links:
University of Utrecht Medical Center

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.