We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pneumonia Diagnosed by Nanopore Sequencing of Sputum

By LabMedica International staff writers
Posted on 04 Oct 2018
Print article
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore Technologies).
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore Technologies).
Pathogen identification in patients with community-acquired pneumonia primarily relies on culture-based techniques. Sequencing-based approaches for pathogen identification are being applied to pneumonia patients.

Haemophilus influenzae, a type of bacteria, can cause many different kinds of infections. These infections range from mild ear infections to severe diseases, like bloodstream infections. H. influenzae is an opportunistic pathogen of the respiratory tract that becomes pathogenic only when other risk factors are present.

Scientists at Seoul National University Hospital (Seoul, South Korea) and their colleagues used deep sequencing of the 16S rRNA gene from sputum to identify H. influenza in a patient with community-acquired pneumonia. They extracted genomic DNA (Genomic DNA Mini Kit from sputum obtained by oropharyngeal suction after a single empiric administration of an antimicrobial drug (cefuroxime, 500 mg). They generated the sequencing libraries using a rapid 16S amplicon sequencing kit.

The team retrospectively performed 16S amplicon sequencing with MinION, a nanopore sequencer, that is gaining attention in metagenomics studies because of its capability for long-read sequencing and real-time analysis, along with its small size. They identified the pneumonia pathogen in this patient by deep sequencing of 16S amplicons from sputum using MinION. The reads aligned to H. influenzae were >100-fold more abundant than reads aligned with other commensal bacteria, reflecting the significant proliferation of H. influenzae in the patient’s respiratory tract.

The authors concluded that with the MinION sequencer, generated reads can be analyzed in real time, which makes this approach more promising. Tentative point-of-care diagnosis by nanopore 16S sequencing and confirmation of the result by standard culture methods would be a feasible approach. They performed sequencing for five hours and the subgroup analyses of reads generated for the first hour and for the first 10 minutes produced similar results, indicating that a relatively short sequencing time would be sufficient for pathogen identification. They estimated that the turnaround time for MinION 16S sequencing can be reduced to less than eight hours. The study was published in the October 2018 issue of the journal Emerging Infectious Diseases.

Related Links:
Seoul National University Hospital

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.