We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Alterations and Expression Profiles Diagnose AEL

By LabMedica International staff writers
Posted on 08 Apr 2019
Print article
Image: A bone marrow smear from a case of acute erythroid leukemia showing a multinucleated erythroblast with megaloblastoid nuclear chromatin (Photo courtesy of Wikimedia Commons).
Image: A bone marrow smear from a case of acute erythroid leukemia showing a multinucleated erythroblast with megaloblastoid nuclear chromatin (Photo courtesy of Wikimedia Commons).
A recent paper pinpointed the genomic alterations that define the subgroups that comprise acute erythroid leukemia.

Acute erythroid leukemia (AEL) is a high-risk leukemia of poorly understood genetic basis, with controversy regarding its diagnosis within the disease spectrum encompassed by myelodysplasia and myeloid leukemia. Myelodysplastic syndromes (MDS) are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells. In contrast, leukemia is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with normal blood cells.

To unravel the controversy regarding diagnosis of AEL, investigators at St. Jude Children's Research Hospital (Memphis, TN, USA) compared genomic features of 159 childhood and adult AEL cases with non-AEL myeloid disorders. Their results defined five age-related subgroups with distinct transcriptional profiles: adult, Tumor protein p53 (TP53) mutated; Nucleophosmin (NPM1) mutated; Histone-lysine N-methyltransferase 2A (KMT2A) mutated/rearranged; adult, DEAD-box helicase 41 (DDX41) mutated; and pediatric, Nucleoporin 98 (NUP98) rearranged.

The investigators found that genomic features influenced outcome of the disease, with NPM1 mutations and HOXB9 (Homeobox protein Hox-B9) overexpression being associated with a favorable prognosis and TP53, FLT3 (FMS related tyrosine kinase 3), or RB1 (RB transcriptional corepressor 1) alterations being associated with poor survival.

"Genomic alterations and gene expression profiles were the strongest predictors of outcome in patients with AEL, which suggests they should be incorporated into the diagnostic and prognostic criteria," said senior author Dr. Charles Mullighan, professor of pathology at St. Jude Children's Research Hospital. "These results mark a new era in understanding and treatment of AEL, an aggressive leukemia that has been plagued by diagnostic controversy and poor outcomes."

The paper was published in the March 29, 2019, online edition of the journal Nature Genetics.

Related Links:
St. Jude Children's Research Hospital

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Chemistry Analyzer
MS100

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.