We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Classifier Test for Lung Disease Validated

By LabMedica International staff writers
Posted on 18 Apr 2019
Print article
Image: The Envisia Genomic Classifier Kit improves diagnosis for patients undergoing evaluation for interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) (Photo courtesy of Veracyte).
Image: The Envisia Genomic Classifier Kit improves diagnosis for patients undergoing evaluation for interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) (Photo courtesy of Veracyte).
In the appropriate clinical setting, the diagnosis of idiopathic pulmonary fibrosis (IPF) requires a pattern of usual interstitial pneumonia to be present on high-resolution chest computerized tomography (HRCT) scan or surgical lung biopsy.

In cases where a CT scan is inconclusive, diagnosis is often achieved by a surgical lung biopsy, which can cause complications. A correct diagnosis is important because patients diagnosed with interstitial lung disease that is not IPF are often treated with immunosuppressants, which can be harmful if that patient does in fact have IPF.

A large team of scientists working with the University of Washington Medical Center (Seattle, WA, USA) prospectively recruited 237 patients for this study from those enrolled in the Bronchial Sample Collection for a Novel Genomic Test (BRAVE) study in 29 US and European sites. Histopathological diagnoses were made by experienced pathologists. Three to five transbronchial lung biopsy samples were collected from all patients specifically for this study, pooled by patient, and extracted for transcriptomic sequencing.

After exclusions, diagnostic histopathology and RNA sequence data from 90 patients were used to train a machine-learning algorithm to identify a usual interstitial pneumonia pattern. The primary study endpoint was validation of the classifier in 49 patients by comparison with diagnostic histopathology. To assess clinical utility, they compared the agreement and confidence level of diagnosis made by central multidisciplinary teams based on anonymized clinical information and radiology results plus either molecular classifier or histopathology results.

Overall, for the 94 patients analyzed, the two teams agreed 86% of the time. For 46 patients, in which histopathology was diagnostic, the teams reported being confident in their diagnosis for 29 cases when just using histopathology to diagnose and 22 cases when using Envisia, a statistically insignificant difference. In 48 patients for whom histopathology did not yield a diagnosis or a classifiable result, the teams reported making confident diagnoses in 30 cases using Envisia and 20 using histopathology results.

The authors concluded that the molecular test provided an objective method to aid clinicians and multidisciplinary teams in ascertaining a diagnosis of IPF, particularly for patients without a clear radiological diagnosis, in samples that can be obtained by a less invasive method. Further prospective clinical validation and utility studies are planned. The study was published on April 1, 2019, in the journal Lancet Respiratory Medicine.

Related Links:
University of Washington Medical Center

Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.