We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pathogenic Variant Carriers Missed by Current Genetic Testing

By LabMedica International staff writers
Posted on 27 Jun 2019
Print article
Image: A color hereditary cancer risk screening kit (Photo courtesy of Color Genomics).
Image: A color hereditary cancer risk screening kit (Photo courtesy of Color Genomics).
Current guidelines recommend genetic testing for people who have a personal or family history of cancer that indicates they might be at an increased risk of harboring a pathogenic familial variant, but this approach could miss people who lack any personal or family history.

Recent advancements in next-generation sequencing have greatly expanded the use of multi-gene testing panels in clinical diagnosis and management. Multi-gene panels are more sensitive and efficient than traditional testing paradigms and are increasingly more affordable. Furthermore, multi-gene panels increase the likelihood of detecting an underlying germline genetic component in diseases with genetic heterogeneity, such as cancer.

A team of scientists working under the auspices of Color Genomics, Inc (Burlingame, CA, USA) retrospective studied included 23,179 individuals who had Color Hereditary Cancer Test results reported between May 2016 and September 2017. The Color Hereditary Cancer Test was used to analyze 30 genes in which pathogenic variants have been associated with an elevated risk of hereditary cancer, including breast, ovarian, uterine/endometrial, colorectal, melanoma, pancreatic, prostate, and stomach.

DNA was extracted from blood or saliva samples and purified using the Chemagic DNA Extraction Kit automated on the Hamilton STAR and the Perkin Elmer Chemagic Liquid Handler instruments. The genes analyzed encompass BRCA1, BRCA2, CDKN2A, PTEN, TP53, and more. Target enrichment was performed with an automated Hamilton STAR hybrid capture procedure using SureSelect XT probes before being loaded onto the NextSeq 500/550 instrument for 150-bp paired-end sequencing.

The team identified 2,811 pathogenic variants in 2,698 individuals, an overall pathogenic variant frequency of 11.6%. Pathogenic variants in BRCA1 and BRCA2 accounted for nearly a third of all positive results, while pathogenic variants linked to Lynch syndrome accounted for another 7.0% of results. They noted that pathogenic variants in BRCA1 or BRCA2 could be found across ethnic groups. While most individuals with a positive result harbored only a single pathogenic variant, a small number had two or more pathogenic variants, such as in BRCA1 or BRCA2 and in another cancer-linked gene. Of the 18,176 individuals in their cohort with sufficient health histories, 61.3% met criteria for genetic testing for breast, ovarian, colorectal, or gastric cancer and 38.7% did not.

Among those patients who did not meet testing criteria, but who underwent testing anyway, the scientists reported an 8.2% pathogenic frequency and, of those, 21.7% had pathogenic variants in genes with well-established testing criteria. That means that of the 749 individuals they identified with a pathogenic variant in BRCA1, BRCA2, TP53, or PTEN, 18.4% would not have met testing guidelines for breast and ovarian cancer. Similarly, slightly more than a third of the individuals they identified with Lynch syndrome-linked variants would not have met testing criteria. The study was published on June 11, 2019, in the Journal of Molecular Diagnostics.

Related Links:
Color Genomics

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.