We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Metabolites Pattern Distinguishes Myasthenia Gravis from RA Patients

By LabMedica International staff writers
Posted on 09 Sep 2019
Print article
Image: The top and front view of the three-dimensional structure of the pentameric nicotinic acetylcholine receptor, which is damaged or destroyed in myasthenia gravis (Photo courtesy of Wikimedia Commons).
Image: The top and front view of the three-dimensional structure of the pentameric nicotinic acetylcholine receptor, which is damaged or destroyed in myasthenia gravis (Photo courtesy of Wikimedia Commons).
A team of Canadian researchers used a pattern of 12 metabolites to distinguish myasthenia gravis patients from healthy individuals or from those with rheumatoid arthritis.

Myasthenia gravis (MG) is an autoimmune disease caused by antibodies that block or destroy nicotinic acetylcholine receptors at the junction between the nerve and muscle. This prevents nerve impulses from triggering muscle contractions. MG, which affects approximately one in 5,000 people, most often women under age 40 or men over 60, is a chronic neuromuscular disease that leads to varying degrees of skeletal muscle weakness. The most commonly affected muscles are those of the eyes, face, and swallowing. It can cause double vision, drooping eyelids, trouble talking, and trouble walking. Left untreated, MG symptoms may cause significant morbidity or even death.

To date, no robust biological marker is available to follow the course of the disease. Therefore, new diagnostic approaches and biological markers are essential not only for improved diagnosis of the disease except for improved outcomes.

In this regard, investigators at the University of Alberta Faculty of Medicine & Dentistry (Edmonton, Canada) performed metabolic analyses using acid- and dansyl-labelled serum from 46 seropositive MG patients, 23 rheumatoid arthritis (RA) patients, and 49 healthy controls.

Results revealed that after identifying more than 10,000 compounds in the serum samples, the investigators were able to point to a unique pattern of 12 metabolites exclusive to patients with myasthenia gravis.

"This is really important because now we have a way to easily separate a patient with myasthenia gravis from someone with rheumatoid arthritis or another autoimmune disease," said contributing author Dr. Zaeem Siddiqi, professor of neurology at the University of Alberta Faculty of Medicine & Dentistry. "What is more, now we are able to explore how those 12 metabolites change in mild, moderate, or severe cases so we can make this biomarker more robust and more effective for predicting the course of the disease and developing treatment plans. Now we have a unique fingerprint or map of metabolites that can easily separate healthy individuals from those with myasthenia gravis, and a path to the discovery of more accurate and specific treatments."

The myasthenia gravis paper was published in the August 1, 2019, online edition of the journal Metabolomics.

Related Links:
University of Alberta Faculty of Medicine & Dentistry

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Urine cfDNA Extraction Kit
CloNext Urine cfDNA Extraction Kit
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.