We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Use of Cell-free DNA Liquid Biopsy to Predict Glioblastoma Progression

By LabMedica International staff writers
Posted on 11 Nov 2019
Print article
Image: A liquid biopsy blood test that measures the amount of cell-free DNA (cfDNA) in the bloodstream correlates with how patients will progress after they are diagnosed with glioblastoma (Photo courtesy of University of Pennsylvania School of Medicine).
Image: A liquid biopsy blood test that measures the amount of cell-free DNA (cfDNA) in the bloodstream correlates with how patients will progress after they are diagnosed with glioblastoma (Photo courtesy of University of Pennsylvania School of Medicine).
Cancer researchers have demonstrated the potential clinical utility of liquid biopsy to measure plasma cell-free DNA (cfDNA) in patients with newly diagnosed glioblastoma in order to predict the progression of the disease.

Glioblastoma (GBM) is the most common primary tumor of the central nervous system and is almost always fatal. The aggressive invasion of glioblastoma cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Treatment of glioblastoma usually comprises surgical removal of the tumor followed by radiation treatment and chemotherapy using the drug temozolomide (TMZ). These treatments usually fail, mainly due to the presence of a cell subpopulation called glioma stem cells (GSCs), which are resistant to radiation and chemotherapy and capable of self-renewal and tumor generation.

As part of a program to develop methods for predicting the progression of GBM, investigators at the University of Pennsylvania School of Medicine (Philadelphia, USA) sought to determine the prognostic impact of plasma cfDNA as well as its role as a surrogate measure of tumor burden and as the subject for next-generation sequencing (NGS).

For this study, the investigators evaluated 42 patients with newly diagnosed GBM. Plasma cfDNA was quantified at baseline prior to initial tumor resection and longitudinally during chemoradiotherapy. Plasma cfDNA was assessed for its association with progression-free survival (PFS) and overall survival (OS), correlated with radiographic tumor burden, and subjected to a targeted NGS panel.

Results revealed that prior to initial surgery, GBM patients had higher plasma cfDNA concentrations than age-matched healthy controls. Plasma cfDNA concentration was correlated with radiographic tumor burden on patients' first post-radiation magnetic resonance imaging scan and tended to rise prior to or concurrently with radiographic tumor progression. Preoperative plasma cfDNA concentration above the mean was associated with inferior PFS. Thus the 28 patients with lowest pre-surgery concentrations of cfDNA - defined as cfDNA that was below the average of the total group - had almost double the length of progression free survival (median 9.5 months) compared with the 14 patients with highest concentrations (median 4.9 months).

Analysis of cfDNA samples from 20 patients by liquid biopsy detected at least one mutation in 11 patients, and all of those mutations differed from those detected in analysis of each patient's solid tumor biopsy.

"Doctors have begun using liquid biopsies more frequently to monitor certain cancers - particularly lung cancer - in recent years as research has shown their effectiveness in other disease sites. But until now, there has been little focus on the clinical utility of liquid biopsy in brain tumors," said senior author Dr. Erica L. Carpenter, assistant professor of medicine at the University of Pennsylvania School of Medicine.

The study was published in the October 30, 2019, online edition of the journal Clinical Cancer Research.

Related Links:
University of Pennsylvania School of Medicine

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.