Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Fluorescence Fingerprinting Assay for Identification of Synthetic Cannabinoid Receptor Agonists

By LabMedica International staff writers
Posted on 14 Nov 2019
Print article
Image: The fluorescence fingerprinting device can test saliva for the presence of the synthetic cannabinoid receptor agonist “spice” in about five minutes (Photo courtesy of University of Bath)
Image: The fluorescence fingerprinting device can test saliva for the presence of the synthetic cannabinoid receptor agonist “spice” in about five minutes (Photo courtesy of University of Bath)
A team of British researchers developed a rapid real-time, point-of-care test for the identification of synthetic cannabinoid receptor agonists (SCRAs), a class of illegal drugs known colloquilly as “Spice” or “K2”.

SCRAs are a family of compounds designed to mimic the effects of tetrahydrocannabinol (THC) and cannabidiol (CBD), the psychoactive molecules in cannabis, by binding to CB1 and CB2 cannabinoid receptors and acting as agonists for receptor function. CB1 receptors are most commonly found in the peripheral and central nervous system, while the structurally smaller CB2 receptors are mostly expressed within the immune system. Under normal endogenous conditions, these cannabinoid receptors have been found to modulate a variety of physiological and cognitive processes including fertility, pregnancy, pre- and postnatal development, appetite, pain sensation, inflammation, mood, and memory, causing a number of major side effects, both psychological and physiological. These include, but are not limited to, acute kidney injury, vomiting, cardiovascular complications, agitation, irritability, confusion, hallucinations, delusions, psychosis, and even death. The severity of these side effects are thought to be due to SCRAs having unusually high binding affinities at CB receptors, coupled with acting as full agonists of CB receptors.

SCRAs are highly potent and addictive drugs that are prevalent in the prison system and among homeless populations in the United Kingdom. SCRAs are chemically diverse, with over a hundred compounds used as recreational drugs. The chemical diversity of SCRA structures presents a challenge in developing techniques to detect them. Typically, GC-MS is used for chemical identification; however, this technology is not usually available in most settings where detection is critical, such as in hospital emergency rooms, in jails or prisons, or among homeless communities.

In this light, investigators at the University of Bath (United Kingdom) sought to develop a real time, point-of-care method for identification of SCRAs.

In a recent paper, they reported that fluorescence spectral fingerprinting, which required only about five minutes to perform, could be used to identify the likely presence of SCRAs, as well as provide more specific information on structural class and concentration. Furthermore, the investigators demonstrated that that fluorescence spectral fingerprints, combined with numerical modeling, could detect both parent and burnt material, and that such fingerprinting was also practical for detecting them in saliva.

Senior author Dr. Chris Pudney, senior lecturer in biology and biochemistry at the University of Bath, said, "My partner is a psychiatrist and she was telling me that currently they do not have a way to confirm when they suspect spice use, they just do not know for sure. You can test for it with a urine or blood sample that is sent off to a lab, but that takes a few days and so in most cases it's pointless. I started looking into the chemistry and it is actually similar to something we have developed for detection of biological molecules. We decided on saliva because it seemed tractable and less invasive than some other options. We have proved the concept with a test that is simple and very accurate. The hardware is compact and portable and the results are easy to understand. We are working on software now, so that the user has a simple “one click” way to use it."

The fluorescence fingerprinting method was described in the September 5, 2019, issue of the journal Analytical Chemistry.

Related Links:
University of Bath

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.