We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Liquid Biopsy Method for Detection of Cancer MicroRNA Biomarkers

By LabMedica International staff writers
Posted on 30 Dec 2019
Print article
Image: Each dot seen in this PRAM image represents one microRNA that has bound to the sensor (Photo courtesy of Nantao Li, University of Illinois)
Image: Each dot seen in this PRAM image represents one microRNA that has bound to the sensor (Photo courtesy of Nantao Li, University of Illinois)
The potential usefulness of the “liquid biopsy” approach for detection of cancer biomarkers in the blood has been increased by the development of a method for capturing and counting cancer-associated microRNAs.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia, and cardiovascular conditions.

Highly selective and sensitive detection of microRNAs is a key challenge for those interested in developing liquid-biopsy approaches. Technologies that can achieve high diagnostic performance without the requirement of complicated processing steps or expensive equipment will be necessary for the technique to be available for general clinical use.

With these features in mind, investigators at the University of Illinois (Urbana-Champaign, USA) developed a digital-readout microRNA diagnostic procedure that relied on microRNA-activated nanoparticle-photonic crystal hybrid coupling. This procedure, which they called PRAM (Photonic Resonator Absorption Microscopy) was designed for the capture and quantification of microRNA biomarkers in samples of blood or serum.

PRAM works by combining a gold nanoparticle probe with a photonic crystal sensor. The probe specifically pairs to a designated microRNA and has a protective cap that becomes displaced when the molecule locates and binds to the target biomarker. The exposed end of the probe then binds to the photonic crystal (PC) biosensor surface. By matching the surface plasmon-resonant wavelength of the nanoparticle probe to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each individual nanoparticle, each positive response produces a signal visible through a microscope.

Results obtained by the PRAM method showed that the procedure was sensitive enough to detect minute amounts of microRNA biomarkers present in a patient's serum while being selective enough to detect the specific marker among the immense number of other molecules that were also present in serum.

"Cancer cells contain gene mutations that enable them to proliferate out of control and to evade the immune system, and some of those mutations turn up in microRNAs," said senior author Dr. Brian Cunningham, professor of electrical and computer engineering at the University of Illinois. "There are specific microRNA molecules whose presence and concentration is known to be related to the presence and aggressiveness of specific types of cancer, so they are known as biomarkers that can be the target molecule for a diagnostic test."

"This approach makes the idea of performing a “liquid biopsy” for low-concentration cancer-related molecules a step closer to reality," said Dr. Cunningham. "This advance demonstrates that it is possible to have an inexpensive and routine method that is sensitive enough to require only a droplet of blood. The results of the test might tell a physician whether a regimen of chemotherapy is working, whether a person's cancer is developing a new mutation that would make it resistant to a drug, or whether a person who had been previously treated for cancer might be having a remission."

Details of the PRAM procedure were published in the September 24, 2019, issue of the journal Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
University of Illinois

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.