We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Urinary Metabolite GWAS Leads to Biomarkers of Kidney Disease

By LabMedica International staff writers
Posted on 04 Feb 2020
Print article
Image: Histopathology of kidney disease: showing completely sclerotic glomeruli and severe chronic tubulointerstitial nephritis (Photo courtesy of Jian-Hua Qiao, MD, FCAP).
Image: Histopathology of kidney disease: showing completely sclerotic glomeruli and severe chronic tubulointerstitial nephritis (Photo courtesy of Jian-Hua Qiao, MD, FCAP).
The kidneys integrate information from continuous systemic processes related to the absorption, distribution, metabolism and excretion (ADME) of metabolites. Scientists have identified ties between urine metabolite levels and common genetic variants, laying the foundation for a more refined view of human metabolic processes and the tissues in which they take place.

Prior studies suggest that tissues from several key organs, from the liver and kidneys to the blood and intestinal tract, have a part to play in different aspects of ADME. It is suspected that there might be much more to learn about metabolism by testing urine samples in individuals with lower-than-usual metabolite detoxification and transport in the kidney's proximal tubules due to existing kidney conditions.

Scientists from the University of Freiburg (Freiburg, Germany) performed a genome-wide association study (GWAS) involving 1,627 individuals with diminished kidney function, searching for genetic loci coinciding with urine metabolite concentrations. Included in the study were urinary concentrations of 1,172 metabolites. The metabolic GWAS (mGWAS) led to 240 loci with apparent ties to urine metabolite concentrations, while their follow-up fine-mapping and single-cell expression analyses helped focus in on potential disease-causing genes, the cell types involved, and the urinary metabolites that may flag genetic predisposition to kidney disease.

The 240 unique metabolite–locus associations (metabolite quantitative trait loci, mQTLs) that were identified and replicated highlight novel candidate substrates for transport proteins. The identified genes are enriched in ADME-relevant tissues and cell types, and they reveal novel candidates for biotransformation and detoxification reactions. Fine mapping of mQTLs and integration with single-cell gene expression permitted the prioritization of causal genes, functional variants and target cell types. The combination of mQTLs with genetic and health information from 450,000 UK Biobank participants illuminated metabolic mediators, and hence, novel urinary biomarkers of disease risk.

The authors concluded that this comprehensive resource of genetic targets and their substrates is informative for ADME processes in humans and is relevant to basic science, clinical medicine and pharmaceutical studies. The study was published on January 20, 2020 in the journal Nature Genetics.

Related Links:
University of Freiburg

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Flu Test
ID NOW Influenza A & B 2

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.