We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Identification of a MicroRNA Biomarker Linked to a Childhood Liver Disease

By LabMedica International staff writers
Posted on 03 Mar 2020
Print article
Image: MicroRNA miR-122 secondary structure and sequence conservation (Photo courtesy of Wikimedia Commons)
Image: MicroRNA miR-122 secondary structure and sequence conservation (Photo courtesy of Wikimedia Commons)
A study of infants and young children suffering from intestinal failure-associated liver disease found that levels of the microRNA biomarker miR-122 decreased following successful fish oil treatment.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation. In addition to miRNAs playing an essential role in tumor development, dysregulation of certain miRNAs has been associated with many different diseases, such as dementia and cardiovascular conditions. When liver cells are damaged, they release miR-122 into the circulation. This biomarker comprises more than 70% of hepatic miRNAs and predicts cholestasis, steatosis, and fibrosis in animals and humans.

Intestinal failure-associated liver disease (IFALD), a serious complication occurring in infants, children, and adults exposed to long-term parenteral nutrition (intravenous feeding), causes a wide-spectrum of disease, ranging from cholestasis and steatosis to fibrosis and eventually cirrhosis. Known host risk factors for IFALD include low birth weight, prematurity, short bowel syndrome, and recurrent sepsis. While there is evidence that microRNA miR-122 is a biomarker for various liver diseases in adults and children, it has not been examined in children with IFALD.

Investigators at the University of California, Los Angeles (USA) evaluated changes in plasma miR-122, correlated this miRNA with serum liver function tests and enzymes, and investigated changes in whole blood transcripts including miR-122 targets in a group of 14 children aged three months to five years old with IFALD who received pure intravenous fish oil (FO) as a treatment for cholestasis.

Blood samples were collected at various times throughout the study, and plasma miR-122 was measured using reverse transcription-quantitative real-time PCR. Whole blood miR-122 targets were quantified using RNA sequencing.

Results for this small cohort of young children with IFALD revealed that miR-122 decreased with FO therapy and correlated with conjugated bilirubin. Key pathways involving oxidation, inflammation, cellular differentiation, and nutrient regulation were downregulated.

“Liver disease is a major health problem that can result in liver failure, the need for a liver transplant, or even death,” said senior author Dr. Sherin Devaskar, professor of pediatrics at the University of California, Los Angeles. “One of our research goals is to find inexpensive, practical, and accurate tests that predict and diagnose liver disease and provide an accurate measure of treatment response. This study suggests that plasma miR-122 may serve as a noninvasive marker of liver disease in children with IFALD, and we believe it could be an important surrogate for other liver diseases.’’

The study was published in the February 18, 2020, online edition of The Journal of Nutrition.

Related Links:
University of California, Los Angeles

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Static Concentrator
BJP 10
New
UHF RFID Tag and Inlay
AD-321r6/AD-321r6-P

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: Photoacoustic images of a splayed vessel structure underlying very light and dark skin tones (Photo courtesy of asquinha, Gubbi, and Bell, doi 10.1117/1.BIOS.2.1.012502)

New Imaging Technique Reduces Skin Tone Bias in Breast Cancer Detection

Breast cancer remains a significant global health issue, and early detection is key to successful treatment. Traditional imaging techniques like mammography often face challenges, particularly for women... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.