We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Increased Membrane Glycoprotein Level Predicts Lung Cancer Metastasis

By LabMedica International staff writers
Posted on 25 Mar 2020
Print article
Image: Micrograph showing a PD-L1 positive non-small cell lung carcinoma (Photo courtesy of Wikimedia Commons)
Image: Micrograph showing a PD-L1 positive non-small cell lung carcinoma (Photo courtesy of Wikimedia Commons)
A protein found in extracellular vesicles (Evs) shed by lung cancer cells was found to be an effective, relatively noninvasive biomarker for the early detection of lung cancer metastasis and could shape the direction of therapeutic decisions.

EVs, which include exosomes, microvesicles, and apoptotic bodies, are cell-derived lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. The vesicles, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are either released from the cell when multivesicular bodies (MVBs) fuse with the plasma membrane, or they are released directly from the plasma membrane. In the past decade, EVs have emerged as important mediators of cell communication because they serve as vehicles for the intercellular transmission of biological signals (proteins or nucleic acids) capable of altering cell function and physiology.

Non–small cell lung cancer (NSCLC) is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. More than half of patients with NSCLC die after developing distant metastases, so rapid, minimally invasive prognostic biomarkers are needed to reduce mortality.

To search for such biomarkers, investigators at Tulane University (New Orleans, LA, USA) used mass spectrometry in a proteomics approach to identify proteins differentially expressed on extracellular vesicles of nonmetastatic 393P and metastatic 344SQ NSCLC cell lines.

The investigators reported that they had found that the tetraspanin-8 (Tspan8) protein was selectively enriched on 344SQ Evs. Tspan8 is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface glycoproteins that are characterized by the presence of four hydrophobic domains. These proteins, which are expressed in many different carcinomas, mediate signal transduction events that play a role in the regulation of cell development, activation, growth, and motility.

In addition to finding increased Tspan8 on the metastatic cell line, analysis of Tspan8 expression in archived serum samples obtained from patients with NSCLC participating in a clinical trial indicated that serum EV-Tspan8 concentration predicted future metastasis.

"The protein could be used as a biomarker to develop a rapid, minimally invasive test to catch these cancers early when they are more treatable," said senior author Dr. Tony Hu, professor of cellular and molecular diagnosis at Tulane University. "The goal of any cancer diagnosis and treatment is to catch it early. This information could help diagnose patients who are at high risk for having their cancer metastasize, and treatment could be tailored to account for that. Not all patients have the same type of tumor, and if you can target therapy to address a particular tumor, you can improve outcomes."

The lung cancer study was published in the March 11, 2020, online edition of the journal Science Advances.

Related Links:
Tulane University

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
HIV Test
Anti-HIV (1/2) Rapid Test Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.